Cell cycle distributions, growth characteristics, and variation in prolactin and growth hormone production in cultured rat pituitary cells. 1977

O P Clausen, and K M Gautvik, and T Lindmo

Clonal strains of rat pituitary tumour cells (GH3 cells) spontaneously produce and secrete prolactin and growth hormone. Chromosome analysis and DNA ploidy measurements revealed that the GH3 cells in the present study were triploid and had a decreased chromosome number compared to the parent strain. Monolayer cultures of these cells grow exponentially for 6-7 days with a mean doubling time of 54 h. Cell cycle distributions and phase durations were determined by micro-flow fluorometric measurements of cellular DNA content combined with computer calculations. During exponential growth the cell cycle distribution did not change (65.4% cells with a G1 phase DNA content, 24.9% with an S phase DNA content, and 9.7% with a (G2 + M) phase DNA content). Counting of mitoses gave 1.4% cells in M phase. The 3H-Tdr labeling indices were determined by autoradiography, and the results were in good agreement with the number of cells in S phase as calculated by micro-flow fluorometry. The phase durations were: Ts=15.9 h, TG2=6.2 h, TM=1.1 h, and TG1=30.9 h. TS and TM calculated from 3H-Tdr labeled and Colcemid treated cultures gave corresponding results. In plateau phase cultures the number of cells with a G1 DNA content increased to 80% and the number of cells with an S phase DNA content decreased to between 5% and 10%. The specific production of prolactin and growth hormone determined by radioimmunoassay showed two and four-fold increases respectively, during exponential growth. The hormone values decreased to initial or subinitial values (day 2 values) when approaching plateau phase. We conclude: that changes in the cell cycle distribution of the cell population cannot be responsible for the spontaneous alterations in hormone production during growth and that most of the hormone-producing cells must be in the G1 phase.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D011003 Ploidies The degree of replication of the chromosome set in the karyotype. Ploidy
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D000091345 Protein Glutamine gamma Glutamyltransferase 2 Calcium-dependent acyltransferase that catalyzes cross-linking of proteins at a GLUTAMINE in one chain with primary amine such as in LYSINE in another chain. In addition it can also accept monoamine substrates to catalyze post-translational modifications (e.g., protein serotonylation). TGM2 Proteins,Tissue Transglutaminase,Tissue-Type Transglutaminase,Transglutaminase 2,Transglutaminase C,Transglutaminase II,TGase II,Proteins, TGM2,Tissue Type Transglutaminase,Transglutaminase, Tissue,Transglutaminase, Tissue-Type
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin

Related Publications

O P Clausen, and K M Gautvik, and T Lindmo
October 1985, Acta endocrinologica,
O P Clausen, and K M Gautvik, and T Lindmo
February 1983, Nucleic acids research,
O P Clausen, and K M Gautvik, and T Lindmo
January 1978, Acta endocrinologica,
O P Clausen, and K M Gautvik, and T Lindmo
April 1977, Journal of cellular physiology,
O P Clausen, and K M Gautvik, and T Lindmo
June 1976, Acta endocrinologica,
O P Clausen, and K M Gautvik, and T Lindmo
September 1982, Molecular and cellular endocrinology,
O P Clausen, and K M Gautvik, and T Lindmo
September 1987, Acta physiologica Scandinavica,
Copied contents to your clipboard!