Characterization of fibrinolytic activity in human vascular grafts. 1985

H Ljungnér, and D Bergqvist

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010960 Plasminogen Activators A heterogeneous group of proteolytic enzymes that convert PLASMINOGEN to FIBRINOLYSIN. They are concentrated in the lysosomes of most cells and in the vascular endothelium, particularly in the vessels of the microcirculation. Extrinsic Plasminogen Activators,Plasminogen Activator,Uterine-Tissue Plasminogen Activator,Uterine Tissue Plasminogen Activator
D001807 Blood Vessel Prosthesis Device constructed of either synthetic or biological material that is used for the repair of injured or diseased blood vessels. Vascular Prosthesis,Blood Vessel Prostheses,Tissue-Engineered Vascular Graft,Graft, Tissue-Engineered Vascular,Grafts, Tissue-Engineered Vascular,Prostheses, Blood Vessel,Prostheses, Vascular,Prosthesis, Blood Vessel,Prosthesis, Vascular,Tissue Engineered Vascular Graft,Tissue-Engineered Vascular Grafts,Vascular Graft, Tissue-Engineered,Vascular Grafts, Tissue-Engineered,Vascular Prostheses,Vessel Prostheses, Blood,Vessel Prosthesis, Blood
D005260 Female Females
D005342 Fibrinolysis The natural enzymatic dissolution of FIBRIN. Fibrinolyses
D006083 Graft Occlusion, Vascular Obstruction of flow in biological or prosthetic vascular grafts. Graft Restenosis, Vascular,Vascular Graft Occlusion,Vascular Graft Restenosis,Graft Restenoses, Vascular,Occlusion, Vascular Graft,Restenosis, Vascular Graft
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D001705 Bioprosthesis Prosthesis, usually heart valve, composed of biological material and whose durability depends upon the stability of the material after pretreatment, rather than regeneration by host cell ingrowth. Durability is achieved 1, mechanically by the interposition of a cloth, usually polytetrafluoroethylene, between the host and the graft, and 2, chemically by stabilization of the tissue by intermolecular linking, usually with glutaraldehyde, after removal of antigenic components, or the use of reconstituted and restructured biopolymers. Glutaraldehyde-Stabilized Grafts,Heterograft Bioprosthesis,Porcine Xenograft Bioprosthesis,Xenograft Bioprosthesis,Bioprostheses,Bioprostheses, Heterograft,Bioprostheses, Porcine Xenograft,Bioprostheses, Xenograft,Bioprosthesis, Heterograft,Bioprosthesis, Porcine Xenograft,Bioprosthesis, Xenograft,Glutaraldehyde Stabilized Grafts,Glutaraldehyde-Stabilized Graft,Graft, Glutaraldehyde-Stabilized,Grafts, Glutaraldehyde-Stabilized,Heterograft Bioprostheses,Porcine Xenograft Bioprostheses,Xenograft Bioprostheses,Xenograft Bioprostheses, Porcine,Xenograft Bioprosthesis, Porcine

Related Publications

H Ljungnér, and D Bergqvist
January 1978, Plastic and reconstructive surgery,
H Ljungnér, and D Bergqvist
January 1983, Haemostasis,
H Ljungnér, and D Bergqvist
August 1966, The American journal of physiology,
H Ljungnér, and D Bergqvist
December 1974, The American surgeon,
H Ljungnér, and D Bergqvist
February 1975, Thrombosis research,
H Ljungnér, and D Bergqvist
August 1974, Archives of surgery (Chicago, Ill. : 1960),
H Ljungnér, and D Bergqvist
January 1988, The Journal of cardiovascular surgery,
H Ljungnér, and D Bergqvist
April 1977, British medical journal,
H Ljungnér, and D Bergqvist
March 1977, British medical journal,
H Ljungnér, and D Bergqvist
January 1979, Bibliotheca anatomica,
Copied contents to your clipboard!