Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. 1985

D J Hepler, and D S Olton, and G L Wenk, and J T Coyle

The functional contribution of nucleus basalis magnocellularis (NBM) and the medial septal area (MSA) to memory was evaluated in two different spatial discriminations. Preoperatively, rats were trained to a criterion level of performance in a simultaneous left/right discrimination on the stem of a T-maze (a trial-independent memory) and a discrete-trial, rewarded alternation discrimination on the arms of the T-maze (a trial-dependent memory). Bilateral lesions were made by injecting ibotenic acid (IBO) into the NBM, MSA, both NBM and MSA, or dorsal globus pallidus (DGP), and by radiofrequency current (RF) in the NBM and MSA. Control rats received operations in which either no current was passed or no neurotoxin was injected. Lesions in the NBM, MSA, or both the NBM and MSA produced a similar pattern of behavioral changes relative to the performance of controls; postoperative reacquisition of the arm discrimination was initially impaired but showed recovery to normal levels, whereas postoperative reacquisition and reversal of the stem discrimination was not impaired (except following the combined NBM and MSA lesion). Lesions of the DGP had no effect on choice accuracy in any discrimination. When the discrimination on the arms was made more difficult by increasing the delay interval during which the information had to be remembered, rats with combined NBM and MSA lesions were again impaired relative to controls and showed no signs of recovery of function. These results provide information about the behavioral functions of the basal forebrain cholinergic system and suggest that pathological changes in certain components of this system can cause disorders of memory.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D008297 Male Males
D008569 Memory Disorders Disturbances in registering an impression, in the retention of an acquired impression, or in the recall of an impression. Memory impairments are associated with DEMENTIA; CRANIOCEREBRAL TRAUMA; ENCEPHALITIS; ALCOHOLISM (see also ALCOHOL AMNESTIC DISORDER); SCHIZOPHRENIA; and other conditions. Memory Loss,Age-Related Memory Disorders,Memory Deficits,Memory Disorder, Semantic,Memory Disorder, Spatial,Memory Disorders, Age-Related,Retention Disorders, Cognitive,Semantic Memory Disorder,Spatial Memory Disorder,Age Related Memory Disorders,Age-Related Memory Disorder,Cognitive Retention Disorder,Cognitive Retention Disorders,Deficit, Memory,Deficits, Memory,Memory Deficit,Memory Disorder,Memory Disorder, Age-Related,Memory Disorders, Age Related,Memory Disorders, Semantic,Memory Disorders, Spatial,Memory Losses,Retention Disorder, Cognitive,Semantic Memory Disorders,Spatial Memory Disorders
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D005917 Globus Pallidus The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus. Paleostriatum,Pallidum,Pallidums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D012688 Septum Pellucidum A triangular double membrane separating the anterior horns of the LATERAL VENTRICLES of the brain. It is situated in the median plane and bounded by the CORPUS CALLOSUM and the body and columns of the FORNIX (BRAIN). Septum Lucidum,Septum Pelusidum,Supracommissural Septum,Lucidum, Septum,Lucidums, Septum,Pellucidum, Septum,Pelusidum, Septum,Pelusidums, Septum,Septum Lucidums,Septum Pelusidums,Septum, Supracommissural,Septums, Supracommissural,Supracommissural Septums

Related Publications

D J Hepler, and D S Olton, and G L Wenk, and J T Coyle
November 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D J Hepler, and D S Olton, and G L Wenk, and J T Coyle
July 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D J Hepler, and D S Olton, and G L Wenk, and J T Coyle
February 1986, Behavioral neuroscience,
D J Hepler, and D S Olton, and G L Wenk, and J T Coyle
January 1988, Psychopharmacology,
D J Hepler, and D S Olton, and G L Wenk, and J T Coyle
November 1989, Neuropharmacology,
D J Hepler, and D S Olton, and G L Wenk, and J T Coyle
August 1989, Behavioral neuroscience,
D J Hepler, and D S Olton, and G L Wenk, and J T Coyle
January 1988, Behavioural brain research,
Copied contents to your clipboard!