Influence of retinoid nutritional status on cellular retinol- and cellular retinoic acid-binding protein concentrations in various rat tissues. 1985

M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman

Studies were conducted to explore the effects of differences in retinoid nutritional status and of sex on the tissue distribution and levels of cellular retinol-binding protein (CRBP) and of cellular retinoic acid-binding protein (CRABP) in the rat. Sensitive and specific radioimmunoassays were developed and employed to measure the levels of both CRBP and CRABP. Four groups of six male rats each were fed experimental diets that differed greatly in the amount and kind of retinoids provided, but were otherwise identical. These groups were comprised of rats that were normal controls, retinoid-deficient, retinoic acid-fed, and excess retinol-fed. A fifth group of six female rats was fed the control diet. Immunogens identical with rat testis CRBP and CRABP, as assessed by radioimmunoassay displacement curves, were found in every rat tissue examined (21 tissues in males, 18 in females). The highest levels of CRBP were found in the proximal portion of the epididymis, the liver, and kidney. The highest levels of CRABP were found in the seminal vesicles, vas deferens, and skin. A significant (p less than 0.01) inverse relationship was found between CRBP and CRABP levels in the different tissues of the male reproductive tract. In both males and females, CRBP levels were highest in the gonads and proximal portion of the reproductive tract and decreased distally, whereas the opposite was true for CRABP. Retinoid-deficient rats showed reduced tissue levels of CRBP; thus, tissue CRBP levels are influenced by diet and retinoid availability. No differences in tissue CRBP levels were found in the rats fed the control, the retinoic acid, or the excess retinol diets. Female control rats had higher CRBP levels than male controls in 4 of 15 tissues compared (liver, lung, thymus, and fat). In contrast, tissue CRABP levels showed no diet- or sex-dependent differences. Only in one tissue, the skin, were differences observed (lower CRABP in retinoid-deficient and in female rats). Thus, CRABP metabolism and levels appear to be minimally influenced by the amount or kind of retinoid ligand available or by sex.

UI MeSH Term Description Entries
D008297 Male Males
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012177 Retinol-Binding Proteins Proteins which bind with RETINOL. The retinol-binding protein found in plasma has an alpha-1 mobility on electrophoresis and a molecular weight of about 21 kDa. The retinol-protein complex (MW Retinoid Binding Protein,Retinol Binding Protein,Retinoid Binding Protein, F-Type,Retinoid Binding Proteins,Retinol Binding Proteins,Binding Protein, Retinoid,Binding Protein, Retinol,Binding Proteins, Retinoid,Binding Proteins, Retinol,Protein, Retinoid Binding,Protein, Retinol Binding,Retinoid Binding Protein, F Type
D012737 Sex Factors Maleness or femaleness as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or effect of a circumstance. It is used with human or animal concepts but should be differentiated from SEX CHARACTERISTICS, anatomical or physiological manifestations of sex, and from SEX DISTRIBUTION, the number of males and females in given circumstances. Factor, Sex,Factors, Sex,Sex Factor
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014801 Vitamin A Retinol and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response. Dietary vitamin A is derived from a variety of CAROTENOIDS found in plants. It is enriched in the liver, egg yolks, and the fat component of dairy products. Retinol,11-cis-Retinol,3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, (all-E)-Isomer,All-Trans-Retinol,Aquasol A,Vitamin A1,All Trans Retinol

Related Publications

M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
October 1986, Journal of lipid research,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
February 1976, The Journal of nutrition,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
January 1990, Methods in enzymology,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
January 1990, Methods in enzymology,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
February 1987, Biology of reproduction,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
November 1982, The Journal of biological chemistry,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
January 1985, Journal of andrology,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
May 1993, Experimental eye research,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
September 1992, The Biochemical journal,
M Kato, and W S Blaner, and J R Mertz, and K Das, and K Kato, and D S Goodman
January 1978, World review of nutrition and dietetics,
Copied contents to your clipboard!