Inhibition of the activation and catalytic activity of insulin receptor kinase by zinc and other divalent metal ions. 1985

D T Pang, and J A Shafer

The autophosphorylation reaction responsible for conversion of insulin receptor (from human placenta) to an active tyrosyl-protein kinase was shown to be inhibited by Zn2+ and other divalent metal ions. The order of inhibitory potency was found to be Cu2+ greater than Zn2+, Cd2+ greater than Co2+, Ni2+. Autophosphorylation of insulin receptor was almost completely blocked by 10 microM Zn2+. Zn2+, however, did not appear to affect the binding of insulin to its receptor. Histidine, a chelator of Zn2+, protected against the inhibitory effects of Zn2+. The failure of histidine to regenerate the competence of the Zn2+-inhibited receptor to undergo autophosphorylation suggested that the inhibition by Zn2+ was irreversible. In addition to inhibiting autophosphorylation, Zn2+ inhibited the tyrosyl-protein kinase activity of highly purified phosphorylated receptor. Zn2+ was also observed to inhibit phosphotyrosyl-protein phosphatase activity present in preparations of partially purified insulin receptor. These inhibitory effects of Zn2+ should be considered in the design of protocols for the isolation and handling of insulin receptor and possibly other tyrosine kinases. Additionally, the possible physiological significance of the inhibition of insulin receptor kinase by Zn2+ is discussed in light of the fact that Zn2+ is accumulated in and secreted from pancreatic islet cells together with insulin.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005260 Female Females

Related Publications

D T Pang, and J A Shafer
March 1988, Biochemistry and cell biology = Biochimie et biologie cellulaire,
D T Pang, and J A Shafer
December 1960, Biochimica et biophysica acta,
D T Pang, and J A Shafer
November 2017, Metallomics : integrated biometal science,
D T Pang, and J A Shafer
April 1983, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
D T Pang, and J A Shafer
January 1975, The Biochemical journal,
Copied contents to your clipboard!