A quantitative analysis of the geometry of cat motoneurons innervating neck and shoulder muscles. 1985

P K Rose, and S A Keirstead, and S J Vanner

The geometry of the somata and dendritic trees of motoneurons innervating neck and shoulder muscles was investigated by using intracellular injections of HRP. In general, these motoneurons did not belong to a homogeneous population of motoneurons. Differences in average primary dendritic diameter, number of primary dendrites, and other measures of dendritic tree size were found between different neck and shoulder motoneuron groups. Several indices of proximal dendritic tree size (number of primary dendrites, sum of dendritic diameters, Rall's dendritic trunk parameter, and the sum of dendritic holes) were weakly correlated with the diameter or surface area of the soma. Some of these correlations depended on the muscle supplied by the motoneuron. The total combined dendritic length ranged from 66,660 to 95,390 microns. There was a weak, but positive, correlation between the diameter of primary dendrites and combined dendritic length. This relationship varied from motoneuron to motoneuron. The diameters of all dendrites of three trapezius motoneurons were examined in detail. The total dendritic surface area examined ranged from 415,000 to 488,100 microns 2 and represented approximately 99% of the total neuronal surface area. Last-order dendrites showed a high degree (39.9%) of taper. Dendritic tapering, by itself, was a major factor in the decrease of the (sum of dendritic diameters)3/2 measured at progressively distal sites from the soma. Although few parent and daughter dendrites obeyed the "three-halves law," the average exponent was 1.57. The diameters of primary dendrites and dendritic surface area were weakly correlated. The correlation between dendritic diameter and combined dendritic length or surface area improved if the weighted average of the diameter of second-order dendrites was used as a measure of dendrite size. Second-order dendrites, whose branches terminated in different regions of the spinal cord, showed different relationships between dendritic diameter and combined dendritic length or surface area. Comparisons between the motoneurons examined in the present study and motoneurons innervating other muscles indicate that, although all spinal motoneurons share several common features (e.g., long dendrites, dendritic tapering), each motoneuron group has a set of unique features (e.g., soma shape, relationship between primary dendrite diameter and dendritic surface area). Thus, the rules governing motoneuron dendritic geometry are not fixed but depend on the species of the motoneuron.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009334 Neck Muscles The neck muscles consist of the platysma, splenius cervicis, sternocleidomastoid(eus), longus colli, the anterior, medius, and posterior scalenes, digastric(us), stylohyoid(eus), mylohyoid(eus), geniohyoid(eus), sternohyoid(eus), omohyoid(eus), sternothyroid(eus), and thyrohyoid(eus). Muscle, Neck,Muscles, Neck,Neck Muscle
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000870 Anterior Horn Cells MOTOR NEURONS in the anterior (ventral) horn of the SPINAL CORD which project to SKELETAL MUSCLES. Anterior Horn Neurons,Neurons, Anterior Horn,Neurons, Ventral Horn,Ventral Horn Cells,Ventral Horn Neurons,Anterior Horn Cell,Anterior Horn Neuron,Cell, Anterior Horn,Cell, Ventral Horn,Cells, Anterior Horn,Cells, Ventral Horn,Neuron, Anterior Horn,Neuron, Ventral Horn,Ventral Horn Cell,Ventral Horn Neuron
D012782 Shoulder Part of the body in humans and primates where the arms connect to the trunk. The shoulder has five joints; ACROMIOCLAVICULAR joint, CORACOCLAVICULAR joint, GLENOHUMERAL joint, scapulathoracic joint, and STERNOCLAVICULAR joint. Shoulders

Related Publications

P K Rose, and S A Keirstead, and S J Vanner
February 1987, The Journal of comparative neurology,
P K Rose, and S A Keirstead, and S J Vanner
January 1987, Acta oto-laryngologica,
P K Rose, and S A Keirstead, and S J Vanner
January 1978, Brain research,
P K Rose, and S A Keirstead, and S J Vanner
October 1990, Nihon juigaku zasshi. The Japanese journal of veterinary science,
P K Rose, and S A Keirstead, and S J Vanner
January 1998, The Journal of comparative neurology,
P K Rose, and S A Keirstead, and S J Vanner
December 1990, Journal of anatomy,
P K Rose, and S A Keirstead, and S J Vanner
January 1982, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
P K Rose, and S A Keirstead, and S J Vanner
May 1977, Experimental brain research,
P K Rose, and S A Keirstead, and S J Vanner
May 1981, Neuroscience letters,
Copied contents to your clipboard!