Observations on the somatodendritic morphology and axonal trajectory of intracellularly HRP-labeled efferent neurons located in the deeper layers of the superior colliculus of the cat. 1985

A K Moschovakis, and A B Karabelas

Efferent neurons of the deeper layers of the cat's superior colliculus were stained with horseradish peroxidase (HRP) to demonstrate patterns of somatodendritic morphology and axonal trajectory. A combination of somatodendritic and axonal features of the HRP-labeled cells revealed the existence of three major groups of tectal efferent neurons (X, T, and I). X neurons are mostly large and multipolar and participate in the crossed descending and ipsilateral ventral ascending projections of the superior colliculus. The X group includes multipolar radiating (X1), tufted (X2), large vertical (X3), medium-sized vertical (X4), and medium-sized horizontal (X5) neurons. T neurons participate in one or two of the major tectofugal bundles (medial descending ipsilateral, lateral descending ipsilateral, medial dorsal ascending, crossed descending) besides providing a commissural branch. They also issue recurrent collaterals distributed within a more or less restricted area of the deeper layers. The T group includes medium-sized, trapezoid, radiating (T1) and small or medium-sized, ovoid, vertical (T2) neurons. I neurons participate in the ipsilateral descending projection of the superior colliculus. They are small, triangular or ovoid, sparsely ramified cells that provide long, varicose collaterals irregularly distributed within the deeper layers. The majority of T neurons are located in the ventral stratum opticum or dorsal stratum griseum intermediale; X3 and X5 neurons are situated immediately below in the dorsal stratum griseum intermediale, while X1, X2, X4, and I neurons are indiscriminately distributed within the deeper layers. The polythetic classification presented here provides a conceptual framework for the description of tectal efferent neurons. It is open-ended and can thereby accommodate new cells types as indicated by the disclosure of a small horizontal (A) and a small radiating (unclassified) neuron. Moreover, it does not preclude the construction of alternate taxonomies. A dendro-architectonic classification into four groups [vertical (X3, X4, T2, I), horizontal (X5, A), radiating (X1, T1, I), and tufted (X2)] can be made and would relate to the mode of integration of various tectopetal inputs. A classification based on the dorsoventral location of tectal efferent neurons is also possible and would relate to the dorsoventral distribution of neurons with specific response properties.

UI MeSH Term Description Entries
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic

Related Publications

A K Moschovakis, and A B Karabelas
December 1997, The Journal of comparative neurology,
A K Moschovakis, and A B Karabelas
January 1991, The Journal of comparative neurology,
A K Moschovakis, and A B Karabelas
July 1982, The Journal of comparative neurology,
A K Moschovakis, and A B Karabelas
October 1988, The Journal of comparative neurology,
A K Moschovakis, and A B Karabelas
March 1983, Journal of neurophysiology,
A K Moschovakis, and A B Karabelas
September 1989, Neuroscience letters,
A K Moschovakis, and A B Karabelas
March 1973, Journal of neurophysiology,
A K Moschovakis, and A B Karabelas
February 1984, Brain research,
A K Moschovakis, and A B Karabelas
January 1996, Visual neuroscience,
Copied contents to your clipboard!