Activity-dependent deformations of presynaptic grids at central synapses. 1985

A Triller, and H Korn

In the CNS, the exocytosis which accompanies transmitter releases occurs at the level of a presynaptic grid. Possible alterations in the grid as a function of this phenomenon were searched for at the synapses established by unmyelinated club endings on the Mauthner cell of teleosts. The number of vesicle openings generated by aldehyde fixation was diminished by cooling the preparation and enhanced after perfusion with a high-KCl Ringer solution. Morphometric analysis of the grid showed that under these conditions the mean distance between its constituent elements, the presynaptic dense projections, increased with the number of exocytotic events. Parallel changes were observed for the mean diameter of the spaces left free between these dense projections, suggesting that vesicle exocytosis produces a transient enlargement of the space where it takes place. These observations indicate that the presynaptic grid is more dynamically involved in the secretory process than previously conceived. It is therefore hypothesized that (i) the movement of the dense projections is a consequence of their interaction with the plasma membrane, and (ii) the distortion of the grid could underlie regulatory mechanisms by which the number of released vesicles is limited after each impulse. It is also proposed that the dense projections contribute to the stabilization of the plasma membrane, thereby preventing its randomization following intense release.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

A Triller, and H Korn
August 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry,
A Triller, and H Korn
June 2007, Journal of anatomy,
A Triller, and H Korn
December 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Triller, and H Korn
April 2021, Nature communications,
A Triller, and H Korn
October 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Triller, and H Korn
September 2008, Proceedings of the National Academy of Sciences of the United States of America,
A Triller, and H Korn
July 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!