Dermal absorption and disposition of 1,3-diphenylguanidine in rats. 1985

P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall

Dermal absorption, distribution, and metabolism of 1,3-diphenylguanidine (CAS 102-06-7) (DPG), widely used as an accelerator in processing rubber and in food packaging, was studied in adult female Sprague-Dawley rats. DPG shows 10% penetration through clipped back skin of the rats in 5 d. The first-order dermal absorption rate constant as determined by least square method was 0.021 +/- 0.002 d-1 (T1/2 = 33.6 d). Approximately 13% of the absorbed dose remained in the body in 5 d. Retention in skin, muscle, liver, intestine and fat contributed most to the body burden of DPG-derived radioactivity in 5 d. All tissues showed tissue to blood ratios greater than 1, with liver and intestine ratios of 26 at 5 d. Approximately 61% of the absorbed dose was eliminated into urine and 27% into feces in 5 d showing rapid clearance of absorbed DPG from the body. High-pressure liquid chromatography (HPLC) analysis of urine revealed two major peaks [parent compound and metabolite(s)]. Within 72 h, approximately 50% of the DPG-derived radioactivity excreted in the urine was parent compound. After 72 h, the DPG-derived radioactivity in the urine was present in the form of a single metabolite, and no parent compound was detected. No parent compound was detected in feces. Two metabolites, neither of which occurred in urine, were detected in feces. The HPLC analysis of the radioactivity at the application site showed only parent compound. Even though DPG shows slow dermal penetration, this route of exposure needs to be considered in the risk assessments because of the suspected chronic toxicity of DPG.

UI MeSH Term Description Entries
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D005260 Female Females
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012869 Skin Absorption Uptake of substances through the SKIN. Absorption, Skin,Intracutaneous Absorption,Intradermal Absorption,Percutaneous Absorption,Transcutaneous Absorption,Transdermal Absorption,Absorption, Intracutaneous,Absorption, Intradermal,Absorption, Percutaneous,Absorption, Transcutaneous,Absorption, Transdermal,Absorptions, Intracutaneous,Absorptions, Intradermal,Absorptions, Percutaneous,Absorptions, Skin,Absorptions, Transcutaneous,Absorptions, Transdermal,Intracutaneous Absorptions,Intradermal Absorptions,Percutaneous Absorptions,Skin Absorptions,Transcutaneous Absorptions,Transdermal Absorptions
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
December 1999, Drug metabolism and disposition: the biological fate of chemicals,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
February 1984, Fundamental and applied toxicology : official journal of the Society of Toxicology,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
December 1999, Toxicology letters,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
January 2006, Contact dermatitis,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
July 1996, Drug metabolism and disposition: the biological fate of chemicals,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
January 1983, Developments in toxicology and environmental science,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
October 2012, Toxicology,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
October 1991, Biopharmaceutics & drug disposition,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
January 1989, Fundamental and applied toxicology : official journal of the Society of Toxicology,
P V Shah, and M R Sumler, and Y M Ioannou, and H L Fisher, and L L Hall
November 2008, Regulatory toxicology and pharmacology : RTP,
Copied contents to your clipboard!