Relationship of the surface structure of metaphase chromosomes to the higher order organization of chromatin fibers. 1985

K W Adolph, and L R Kreisman

Scanning electron microscopy (SEM), as well as transmission electron microscopy (TEM), has been utilized to determine how the surface structure of mitotic chromosomes is related to the organization of the 30 nm chromosomal fibers. SEM revealed the surfaces of isolated, HeLa cell chromosomes to possess a knobby substructure with chromosomes prepared for EM in buffers containing 0.5-1.5 mM Mg2+. These projections had substantially greater widths (65-70 nm) than the underlying chromatin fibers. Reducing the Mg ion concentration to 0.05-0.15 mM resulted in the further expansion of the chromosomes, which flattened the chromosomes for SEM so the fibers became the dominant feature of the micrographs. The surface protuberances are interpreted as representing the peripheral tips of radial chromatin loops. The same procedure of slightly expanding chromosomes by decreasing the Mg2+ concentration in resuspension buffer was also utilized in a TEM, serial sectioning study. Longitudinal sections close to the central chromatid axis showed radially oriented fibers within the planes of the sections. This was replaced by a dot pattern when the longitudinal sections grazed the periphery of the chromatid. Transverse sections displayed more clearly the radial orientation of the fibers. A consistent picture emerges from applying SEM and TEM that supports the "radial loop" model for the primary mode of organization of chromatin fibers in metaphase chromosomes.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008677 Metaphase The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D002842 Chromatids Either of the two longitudinally adjacent threads formed when a eukaryotic chromosome replicates prior to mitosis. The chromatids are held together at the centromere. Sister chromatids are derived from the same chromosome. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromatid
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome

Related Publications

K W Adolph, and L R Kreisman
April 2001, Current opinion in genetics & development,
K W Adolph, and L R Kreisman
April 2019, The EMBO journal,
K W Adolph, and L R Kreisman
December 1978, Chromosoma,
K W Adolph, and L R Kreisman
January 2006, Biochemical Society symposium,
K W Adolph, and L R Kreisman
April 1979, Chromosoma,
K W Adolph, and L R Kreisman
April 2013, Seminars in cancer biology,
Copied contents to your clipboard!