The mechanics of multi-joint posture and movement control. 1985

N Hogan

The dependence of muscle force on muscle length gives rise to a "spring-like" behavior which has been shown to play a role in the execution of single-joint posture and movement. This paper extends this concept and considers the influence of the apparent mechanical behavior of the neural, muscular and skeletal system on the control and coordination of multiple degree of freedom posture and movement. A rigorous definition of "spring-like" behavior is presented. From it a numerically quantifiable, experimental test of spring-like behavior is formulated. It is shown that if the steady-state force-displacement behavior of a limb is not spring-like, this can only be due to the action of inter-muscular feedback, and can not be due to intrinsic muscle properties. The directional character of the spring-like behavior of a multiple degree of freedom system is described. The unique way in which synergistic coactivation of polyarticular muscles may modulate the directional properties of the spring-like behavior of a multiple degree of freedom system is explained. Dynamic aspects of postural behavior are also considered. The concept of mechanical impedance is presented as a rigorous dynamic generalisation of the postural stiffness of the limb. The inertial behavior of the system is characterised by its mobility. As with the stiffness or impedance, in the multiple degree of freedom case it has a directional property. The way in which the apparent kinematic redundancy of the musculo-skeletal system may be used to modify its dynamic behavior is explained. Whereas the inertial behavior of a single limb segment is not modifiable, it is shown that the apparent inertial behavior of a multiple degree of freedom system may be modulated by repositioning the joints. A unified description of the posture and movement of a multi-joint system is presented by defining a "virtual trajectory" of equilibrium positions for the limb which may be specified by the neuro-muscular system. The way in which this approach may lead to a simplification of some the apparent computational difficulties associated with the control of multi-joint motion is discussed.

UI MeSH Term Description Entries
D007596 Joints Also known as articulations, these are points of connection between the ends of certain separate bones, or where the borders of other bones are juxtaposed. Joint
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011187 Posture The position or physical attitude of the body. Postures
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001132 Arm The superior part of the upper extremity between the SHOULDER and the ELBOW. Brachium,Upper Arm,Arm, Upper,Arms,Arms, Upper,Brachiums,Upper Arms
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic

Related Publications

N Hogan
January 2022, Frontiers in integrative neuroscience,
N Hogan
April 1973, Brain research,
N Hogan
January 1948, Zeitschrift fur Anatomie und Entwicklungsgeschichte,
N Hogan
July 2020, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
N Hogan
September 1997, Archives italiennes de biologie,
N Hogan
January 2005, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
Copied contents to your clipboard!