Effect of ethylenediaminetetraacetate upon the surface of Escherichia coli. 1977

M E Bayer, and L Leive

The effect of ethylenediaminetetraacetate (EDTA) on the envelope of two strains of Escherichia coli (B and Cla) was studied with freeze-fracturing methods. Untreated cells showed the outer membrane's outer surface with a fine texture of randomly spaced depressions of about 4.5-nm diameter; small areas with symmetrical arrangements of structural surface elements were also observed. The outer membrane's fracture plane revealed a random distribution of particles on its "concave" plane, only occasionally interrupted by particle-free areas. The "convex" aspect of the outer membrane's fracture plane showed only a few scattered particles. The cleavage plane of the inner membrane was often interrupted by many localized elevated plateaus, at which the cleaving process had, for short distances, switched to the outer membrane. The effects of EDTA treatment were mainly seen in the structure of the freeze-etched outer membrane: (i) the pits as well as the symmetrical surface elements of the outer membrane's outer surface had disappeared; (ii) a number of plateaus (about 20 to 50/cell) were seen at which a cleavage plane within the inner membrane had switched to the hydrophobic portion of the outer membrane (outer membrane's fracture plane). These plateaus were also visible in untreated cells; however, EDTA treatment apparently caused an increased exposure of plateaus. Surface areas, exposed by freeze-etching, revealed the underlying plateaus as elevations in the surface contour of the cell, suggesting a slower etching rate in the zones of the plateaus relative to the rest of the outer membrane. Well-defined, particle-free patches in the outer membrane's fracture plane, concave, were more frequent and larger in size after EDTA treatment than in the controls. In the presence of glycerol, the cells often cleaved in the outer membrane's fracture plane, but isolated plateaus were rarely observed. After metabolic poisoning of cells for 15 to 25 min at 37 degrees C, the plateaus had widened. These data suggest that the material of the plateaus has a slow rate of lateral diffusion. Placement of EDTA-treated cells in fresh medium at 37 degrees C caused, after 3 to 5 min, the reoccurrence of the pitted surface structure. We propose that the plateaus represent localized zones, at which newly synthesized lipopolysaccharide has been inserted.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005613 Freeze Etching A replica technique in which cells are frozen to a very low temperature and cracked with a knife blade to expose the interior surfaces of the cells or cell membranes. The cracked cell surfaces are then freeze-dried to expose their constituents. The surfaces are now ready for shadowing to be viewed using an electron microscope. This method differs from freeze-fracturing in that no cryoprotectant is used and, thus, allows for the sublimation of water during the freeze-drying process to etch the surfaces. Etching, Freeze

Related Publications

M E Bayer, and L Leive
May 1948, Journal of bacteriology,
M E Bayer, and L Leive
January 1971, Acta microbiologica Academiae Scientiarum Hungaricae,
M E Bayer, and L Leive
November 1964, Biochimica et biophysica acta,
M E Bayer, and L Leive
May 1971, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!