Catabolism of L-lysine by Pseudomonas aeruginosa. 1977

J C Fothergill, and J R Guest

Pseudomonas aeruginosa PACI grows poorly on L-lysine as sole source of carbon but mutant derivatives which grow rapidly were readily isolated. Studies with one such mutant, P. aeruginosa PAC586, supported the existence of a route for L-lysine catabolism which differes from those reported previously in other species of Pseudomonas. The postulated route, the cadaverine or decarboxylase pathway, is initiated by the decarboxylation of L-lysine and involves the following steps: L-lysine leads to cadverine leads to I-piperideine leads 5-aminovalerate leads to glutarate semialdehyde leads glutarate. Evidence for this pathway is based on the characterization of the pathway reactions and the induction of the corresponding enzymes by growth on L-lysine. The first three enzymes were also induced by growth on cadaverine and to a lesser extent by 5-aminovalerate. No evidence was obtained for the presence of pathways involving L-lysine 2-monooxygenase or L-pipecolate dehydrogenase, but another potential route for L-lysine catabolism initiated by L-lysine 6-aminotransferase was detected. Studies with mutants unable to grow on L-lysine supported the existence of more than one catabolic pathway for L-lysine in this organism and indicated that all routes converge on a pathway for glutarate catabolism which generates acetyl-CoA. Pipecolate catabolism also appeared to converge on the glutarate pathway in P. AERUGINOSA. The results suggested that the growth rate of the parental strain is limited by the rate of transport and/or decarboxylation of L-lysine. The cadaverine pathway was present, but not so highly induced, in the parental strain P. aeruginosa PACI. Pseudomonas fluorescens contained enzymes of both the cadaverine (decarboxylase) and oxygenase pathways, strains of P. putida (biotypes A and B) contained enzymes of the oxygenase pathway but not the decarboxylase pathway and P. multivorans appeared deficient in both. All these species possessed L-lysine aminotransferase activity.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010875 Pipecolic Acids Acids, Pipecolic
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002103 Cadaverine A foul-smelling diamine formed by bacterial DECARBOXYLATION of LYSINE. It is also an intermediate secondary metabolite in lysine-derived alkaloid biosynthetic pathways (e.g., QUINOLIZIDINES and LYCOPODIUM). 1,5-Pentanediamine,BioDex 1,Pentamethylenediamine,1,5 Pentanediamine
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D000637 Transaminases A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1. Aminotransferase,Aminotransferases,Transaminase

Related Publications

J C Fothergill, and J R Guest
November 2010, Journal of bacteriology,
J C Fothergill, and J R Guest
February 1980, Journal of general microbiology,
J C Fothergill, and J R Guest
February 1980, Journal of general microbiology,
J C Fothergill, and J R Guest
September 1970, The Journal of applied bacteriology,
J C Fothergill, and J R Guest
February 1974, Journal of bacteriology,
J C Fothergill, and J R Guest
February 1980, Journal of general microbiology,
J C Fothergill, and J R Guest
February 2023, International journal of molecular sciences,
J C Fothergill, and J R Guest
January 1991, FEMS microbiology letters,
J C Fothergill, and J R Guest
November 2018, Antimicrobial agents and chemotherapy,
J C Fothergill, and J R Guest
August 1979, Biochimica et biophysica acta,
Copied contents to your clipboard!