Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens. 1985

T J Close, and R C Tait, and C I Kado

We isolated a mutant strain of Agrobacterium tumefaciens, designated Ros, that has a pleiotropic phenotype which includes elevated levels of expression of certain genes in the virulence (Vir) region of tumor-inducing plasmid pTiC58. This mutant and others were isolated by fusing the promoter of the Vir bak gene to a promoterless gene (cat) that encodes chloramphenicol acetyltransferase and then selecting for increased expression of cat in A. tumefaciens. The ros mutation is chromosomal in nature and is characterized by a more-than-300-fold increase in the level of expression of bak and a 12-fold increase in the level of expression of an adjacent divergent operon containing the hdv genes, which are involved in some aspect of host specificity. The Ros mutant is fully virulent and is typified by its unusual colony morphology; the colonies have rough surfaces, uneven edges, and a pit in the center at 24 degrees C and vary markedly in appearance from one growth temperature to another. The Ros mutant is not able to form colonies at 12 degrees C, a temperature at which the wild-type strain forms colonies in 14 days. The ros mutation occurs spontaneously with a frequency of 5 X 10(-8). Genetic and biochemical evidence indicates that the product of the ros locus is a negative regulator of Ti plasmid genes and is related to undefined chromosomally encoded functions that are involved in the mutant phenotype.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010941 Plant Tumors A localized proliferation of plant tissue forming a swelling or outgrowth, commonly with a characteristic shape and unlike any organ of the normal plant. Plant tumors or galls usually form in response to the action of a pathogen or a pest. (Holliday, P., A Dictionary of Plant Pathology, 1989, p330) Crown Gall,Galls, Plant,Plant Galls,Crown Galls,Gall, Crown,Gall, Plant,Galls, Crown,Plant Gall,Plant Tumor,Tumor, Plant,Tumors, Plant
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.

Related Publications

T J Close, and R C Tait, and C I Kado
February 1986, Nucleic acids research,
T J Close, and R C Tait, and C I Kado
November 1987, Journal of bacteriology,
T J Close, and R C Tait, and C I Kado
July 1983, Journal of bacteriology,
T J Close, and R C Tait, and C I Kado
January 1984, Nature,
T J Close, and R C Tait, and C I Kado
February 1983, Journal of bacteriology,
T J Close, and R C Tait, and C I Kado
May 1984, Journal of bacteriology,
T J Close, and R C Tait, and C I Kado
January 1984, Molecular & general genetics : MGG,
T J Close, and R C Tait, and C I Kado
March 1990, Journal of bacteriology,
Copied contents to your clipboard!