Adriamycin as a probe for the transversal distribution of cardiolipin in the inner mitochondrial membrane. 1985

D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli

The ability of adriamycin to complex cardiolipin was used to determine the distribution of cardiolipin across the inner membrane of rat liver and heart mitochondria. In both mitochondrial types, about 57 +/- 5% of the total cardiolipin was found to be located in the cytoplasmic face of the inner membrane. Mitochondria and mitoplasts were used to study the cytoplasmic face of the inner membrane, purified submitochondrial vesicles with inverted membrane orientation for the matrix face. The cardiolipin amount titrated by adriamycin in the latter was found to be complementary to the amount titrated in the cytoplasmic face. The adriamycin association constant determined for the first saturation level of mitochondria was in good agreement with the value published by Goormaghtigh et al. (Goormaghtigh, E., Chatelain, P., Caspers, J., and Ruysschaert, J. M. (1980) Biochim. Biophys. Acta 597, 1-14) for cardiolipin in artificial membranes. Two binding plateaus were observed when increasing amounts of adriamycin were added to mitochondria. The plateau at higher concentrations is conveniently explained by the penetration of adriamycin into mitochondria and the titration of cardiolipin in the matrix face. Scatchard plot analysis of the binding curves leading to the two plateaus produced almost identical association constants. The total amount of cardiolipin in mitochondria calculated from curves of this type corresponded to the total amount of cardiolipin determined by phosphate analysis of extracts, analyzed by thin layer chromatography.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
January 1987, Sheng li ke xue jin zhan [Progress in physiology],
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
June 1997, The Biochemical journal,
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
December 2021, The EMBO journal,
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
August 2018, Chemistry and physics of lipids,
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
September 2018, Biochimica et biophysica acta. Bioenergetics,
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
March 1994, European journal of biochemistry,
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
June 2013, Molecular biology of the cell,
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
November 2002, The Journal of biological chemistry,
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
September 2009, The Journal of cell biology,
D Cheneval, and M Müller, and R Toni, and S Ruetz, and E Carafoli
April 1990, Biophysical chemistry,
Copied contents to your clipboard!