Shortening velocity and myosin heavy chains of developing rabbit muscle fibers. 1985

P J Reiser, and R L Moss, and G G Giulian, and M L Greaser

The regulation of vertebrate muscle contraction with respect to the role of the different subunits of myosin remains somewhat uncertain. One approach to gaining a better understanding of the molecular basis of contraction is to study developing muscle which undergoes changes in myosin isozyme composition and contractile properties during the normal course of maturation. The present study utilizes single fibers from psoas muscles of rabbits at several ages as a model system for fast-twitch muscle development. This approach eliminates the inherent problems of interpreting results from studies on whole muscles which usually contain heterogeneous fiber types with respect to contractile properties and isoenzyme composition. Maximum velocity of shortening and tension-generating ability of individual fibers were measured and the myosin heavy chain composition of the same fibers was examined using an ultrasensitive sodium dodecyl sulfate-polyacrylamide gel system. The results indicate that 1) with regard to contractile properties, there is a transitional period from slow to fast shortening velocities within the first postnatal month; 2) a strong, positive correlation exists between the speed of shortening and tension-generating ability of individual postnatal day 7 fibers, suggesting that as more myosin is incorporated in these developing fibers it is of the fast type; and 3) there is a wide variation in maximum velocity of shortening among postnatal day 7 psoas fibers which is also a time when a mixture of heavy chain isoforms characterizes the myosin composition of single muscle fibers.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular

Related Publications

P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
February 2002, The Annals of otology, rhinology, and laryngology,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
September 2001, Journal of dental research,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
February 2001, American journal of physiology. Cell physiology,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
September 1986, The American journal of physiology,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
May 1984, Circulation research,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
February 1986, Muscle & nerve,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
May 2002, American journal of physiology. Cell physiology,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
May 1996, The Journal of physiology,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
December 2001, The Journal of biological chemistry,
P J Reiser, and R L Moss, and G G Giulian, and M L Greaser
June 1988, The Journal of biological chemistry,
Copied contents to your clipboard!