Establishment and characterization of the human medulloblastoma cell line and transplantable xenograft D283 Med. 1985

H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner

A new continuous cell line and transplantable xenograft, D283 Med, was derived from the peritoneal implant and ascitic fluid of a child with metastatic medulloblastoma and grew in vitro in suspension culture with spontaneous macroscopic spheroid formation. The in vitro population doubling time was 52.55 hours. Mean colony forming efficiency in an agarose medium was 1.83 +/- 0.56%. The cell line, D283 Med, grew in athymic mice as serially transplantable intracranial and subcutaneous xenografts. Intracranial tumors grew as masses of small cells with scant cytoplasm and abundant mitotic figures and prominent anuclear zones resembling neuroblastic rosettes. Subcutaneous (SQ) tumors were markedly cellular neoplasms but did not contain rosettes. They expressed glutamine synthetase, neuron-specific enolase and neurofilament protein. Glial fibrillary acidic protein and S-100 protein were not detected. The SQ tumors grew to 500 mm3 with a latency of 52.55 +/- 12.5 days and a doubling time of 9.33 +/- 2.39 days. The stemline karyotypes of the peritoneal implant and ascitic fluid cells contained an extra copy of chromosome number 11 and three marker chromosomes (8q+, 17p+, 20q+). The cultured cell line and subcutaneous and intracranial xenografts retained the three marker chromosomes and differed from the original karyotype only in that they lacked the additional copy of chromosome number 11. This cell line and transplantable xenograft may allow further analysis of the biological properties and therapeutic sensitivity of human medulloblastoma.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008527 Medulloblastoma A malignant neoplasm that may be classified either as a glioma or as a primitive neuroectodermal tumor of childhood (see NEUROECTODERMAL TUMOR, PRIMITIVE). The tumor occurs most frequently in the first decade of life with the most typical location being the cerebellar vermis. Histologic features include a high degree of cellularity, frequent mitotic figures, and a tendency for the cells to organize into sheets or form rosettes. Medulloblastoma have a high propensity to spread throughout the craniospinal intradural axis. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2060-1) Arachnoidal Cerebellar Sarcoma, Circumscribed,Medulloblastoma, Desmoplastic,Medullomyoblastoma,Sarcoma, Cerebellar, Circumscribed Arachnoidal,Medulloblastoma, Adult,Medulloblastoma, Childhood,Melanocytic Medulloblastoma,Adult Medulloblastoma,Adult Medulloblastomas,Childhood Medulloblastoma,Childhood Medulloblastomas,Desmoplastic Medulloblastoma,Desmoplastic Medulloblastomas,Medulloblastoma, Melanocytic,Medulloblastomas,Medulloblastomas, Adult,Medulloblastomas, Childhood,Medulloblastomas, Desmoplastic,Medulloblastomas, Melanocytic,Medullomyoblastomas,Melanocytic Medulloblastomas
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014183 Transplantation, Heterologous Transplantation between animals of different species. Xenotransplantation,Heterograft Transplantation,Heterografting,Heterologous Transplantation,Xenograft Transplantation,Xenografting,Transplantation, Heterograft,Transplantation, Xenograft

Related Publications

H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
March 1991, Hiroshima journal of medical sciences,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
September 1988, Cancer genetics and cytogenetics,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
August 1995, Archives of pathology & laboratory medicine,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
January 2012, Journal of neuro-oncology,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
December 2020, Journal of proteome research,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
August 1977, International journal of cancer,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
October 1989, The American journal of pathology,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
January 1987, Neuropathology and applied neurobiology,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
July 1989, No to shinkei = Brain and nerve,
H S Friedman, and P C Burger, and S H Bigner, and J Q Trojanowski, and C J Wikstrand, and E C Halperin, and D D Bigner
June 1991, Laboratory investigation; a journal of technical methods and pathology,
Copied contents to your clipboard!