Electrical excitability of motor nerve terminals in the mouse. 1985

T Konishi

Electrical activity of motor nerve terminals was recorded with focal extracellular electrodes under visual location with Nomarski optics in the intercostal muscle of the mouse. Following ionophoretic applications of tetrodotoxin (TTX) to the last three nodes of Ranvier, a nerve impulse jumped across the three inexcitable nodes and excited the heminodal region. When excitation at the last node of Ranvier and the heminodal region was blocked by TTX, the distal terminal revealed a small inward current in response to nerve stimulation. This inward current disappeared when TTX was applied to the distal terminal, indicating the presence of active inward currents in this region under normal conditions. When excitation at the last node, heminode and distal terminals was blocked by TTX, the transmitter release was still observed by nerve stimulation, suggesting substantial passive depolarization of the terminal by excitation of up-stream nodes of Ranvier. Local hyperpolarization of the distal terminal caused an increase in the amplitude of the TTX-sensitive inward current at the terminal, and the reverse effects were exerted by depolarization of the terminal. It is concluded that the mouse motor terminal is electrically excitable and that the TTX-sensitive inward current at the terminal is largely masked by passive depolarization due to excitation of up-stream nodes of Ranvier and the heminode under normal conditions.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011901 Ranvier's Nodes Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T Konishi
January 1982, Journal de physiologie,
T Konishi
February 2008, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
T Konishi
February 1989, Pflugers Archiv : European journal of physiology,
T Konishi
January 1947, Helvetica physiologica et pharmacologica acta,
T Konishi
August 1985, Journal of neurocytology,
T Konishi
April 1997, The European journal of neuroscience,
T Konishi
August 1974, The Journal of physiology,
Copied contents to your clipboard!