Sindbis virus mutants able to replicate in methionine-deprived Aedes albopictus cells. 1985

R K Durbin, and V Stollar

Previous work from this laboratory has shown that the replication of Sindbis virus (SV) in Aedes albopictus cells is sensitive to methionine withdrawal. This sensitivity is thought to reflect a diminished concentration of S-adenosylmethionine (Ado Met) resulting from methionine starvation. Serial passage of SV on Ae. albopictus cells maintained in low concentrations of methionine gave rise to a population of mutants whose replication in mosquito cells was resistant to methionine starvation. In vertebrate cells, these mutants were also resistant to inhibition by cycloleucine. We favor the hypothesis that the adaptation to low methionine reflects the accumulation of mutations resulting in a viral RNA "cap" methyltransferase with an increased affinity for Ado Met.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003588 Cytopathogenic Effect, Viral Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses. Cytopathic Effect, Viral,Viral Cytopathogenic Effect,Cytopathic Effects, Viral,Cytopathogenic Effects, Viral,Effect, Viral Cytopathic,Effect, Viral Cytopathogenic,Effects, Viral Cytopathic,Effects, Viral Cytopathogenic,Viral Cytopathic Effect,Viral Cytopathic Effects,Viral Cytopathogenic Effects
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000330 Aedes A genus of mosquitoes (CULICIDAE) frequently found in tropical and subtropical regions. YELLOW FEVER and DENGUE are two of the diseases that can be transmitted by species of this genus. Aede
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012315 RNA Caps Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis. RNA Cap,5' Capped RNA,5' mRNA Cap Structure,Cap, RNA,Caps, RNA,RNA, 5' Capped

Related Publications

R K Durbin, and V Stollar
October 1975, Journal of virology,
R K Durbin, and V Stollar
June 1981, Canadian journal of microbiology,
R K Durbin, and V Stollar
January 1971, Current topics in microbiology and immunology,
R K Durbin, and V Stollar
September 2003, Journal of medical entomology,
Copied contents to your clipboard!