Dissociation and reconstitution of a DNA polymerase alpha-primase complex. 1985

M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada

The conditions for dissociation of the DNA polymerase alpha-primase complex (DNA polymerase alpha 1) have been examined. It was revealed that 50% ethylene glycol effectively dissociated the complex. The dissociated DNA polymerase and primase were purified to eliminate cross-contaminating activities by column chromatography using buffers containing 50% ethylene glycol. The sedimentation coefficients of the purified DNA polymerase and primase were 7.1S and 5.7S, respectively. These two enzymes were mixed in the presence of 20% ethylene glycol and the mixture was sedimented through a glycerol gradient containing no ethylene glycol. The DNA polymerase and primase activities co-sedimented at 9.1S which corresponds to the S value of intact alpha 1, indicating the reconstitution of the DNA polymerase alpha-primase complex.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D005026 Ethylene Glycols An ethylene compound with two hydroxy groups (-OH) located on adjacent carbons. They are viscous and colorless liquids. Some are used as anesthetics or hypnotics. However, the class is best known for their use as a coolant or antifreeze. Dihydroxyethanes,Ethanediols,Glycols, Ethylene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA
D013724 Teratoma A true neoplasm composed of a number of different types of tissue, none of which is native to the area in which it occurs. It is composed of tissues that are derived from three germinal layers, the endoderm, mesoderm, and ectoderm. They are classified histologically as mature (benign) or immature (malignant). (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1642) Dysembryoma,Teratoid Tumor,Teratoma, Cystic,Teratoma, Mature,Teratoma, Benign,Teratoma, Immature,Teratoma, Malignant,Benign Teratoma,Benign Teratomas,Dysembryomas,Immature Teratoma,Immature Teratomas,Malignant Teratoma,Malignant Teratomas,Teratoid Tumors,Teratomas,Teratomas, Benign,Teratomas, Immature,Teratomas, Malignant,Tumor, Teratoid,Tumors, Teratoid
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
May 2003, European journal of biochemistry,
M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
November 1992, Cell biology international reports,
M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
June 1986, Journal of biochemistry,
M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
May 1992, European journal of biochemistry,
M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
March 2003, TheScientificWorldJournal,
M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
November 1999, Molecular and cellular biology,
M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
June 1985, The Journal of biological chemistry,
M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
January 1999, Molekuliarnaia biologiia,
M Suzuki, and T Enomoto, and F Hanaoka, and M Yamada
May 1987, Biochemistry,
Copied contents to your clipboard!