Growth delay in 9L rat brain tumor spheroids after irradiation with single and split doses of X rays. 1985

R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen

The response of 9L spheroids to irradiation with single and split doses of X rays has been investigated. Irradiation with single doses caused a dose-dependent decrease in spheroid growth rate, which eventually returned to the growth rate for unirradiated spheroids. This delay appeared to be related to cell survival. When spheroids were irradiated with two 4-Gy doses of X rays separated by various times the amount of growth delay was intermediate between that observed with single doses of 4 and 8 Gy. For relatively short times (15-90 min), recovery probably resulted from repair processes, but for longer times (up to 24 hr), recovery also appeared to depend on cellular redistribution and repopulation effects.

UI MeSH Term Description Entries
D007399 Interphase The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs). Interphases
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
February 1984, Cancer research,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
January 1986, The British journal of cancer. Supplement,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
July 1981, Radiation research,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
January 1965, Archivum immunologiae et therapiae experimentalis,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
April 1982, Cancer research,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
February 1979, International journal of radiation biology and related studies in physics, chemistry, and medicine,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
October 1979, The British journal of radiology,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
December 1974, Nature,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
November 1988, The British journal of radiology,
R F Jostes, and M E Williams, and M H Barcellos-Hoff, and T Hoshino, and D F Deen
November 1982, Cancer,
Copied contents to your clipboard!