Ultrastructural analysis of the terminals of various somatosensory pathways in the ventrobasal complex of the rat thalamus: an electron-microscopic study using wheatgerm agglutinin conjugated to horseradish peroxidase as an axonal tracer. 1985

M Peschanski, and F Roudier, and H J Ralston, and J M Besson

We used wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) as an anterograde tracer to label the terminals of the lemniscal, spinothalamic, and trigeminothalamic pathways in the ventrobasal complex of the rat thalamus (VB). The use of benzidine dihydrochloride (BDHC) as the chromogen allowed us to view the labeled profiles with the electron microscope and permitted us to compare the morphology of the terminals from the various pathways. We found that all the labeled somatosensory pathways terminate in the VB in the form of large terminals that contain round synaptic vesicles and make numerous asymmetrical synaptic contacts, usually with dendritic protrusions and proximal dendrites. The present results demonstrate that pathways conveying noxious and non-noxious somatosensory information terminate upon thalamic neurons with synaptic terminals having similar morphological features.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013133 Spinothalamic Tracts A bundle of NERVE FIBERS connecting each posterior horn of the spinal cord to the opposite side of the THALAMUS, carrying information about pain, temperature, and touch. It is one of two major routes by which afferent spinal NERVE FIBERS carrying sensations of somaesthesis are transmitted to the THALAMUS. Spinothalamic Tract,Tract, Spinothalamic,Tracts, Spinothalamic
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic
D014276 Trigeminal Nerve The 5th and largest cranial nerve. The trigeminal nerve is a mixed motor and sensory nerve. The larger sensory part forms the ophthalmic, mandibular, and maxillary nerves which carry afferents sensitive to external or internal stimuli from the skin, muscles, and joints of the face and mouth and from the teeth. Most of these fibers originate from cells of the TRIGEMINAL GANGLION and project to the TRIGEMINAL NUCLEUS of the brain stem. The smaller motor part arises from the brain stem trigeminal motor nucleus and innervates the muscles of mastication. Cranial Nerve V,Fifth Cranial Nerve,Nerve V,Nervus Trigeminus,Cranial Nerve, Fifth,Fifth Cranial Nerves,Nerve V, Cranial,Nerve Vs,Nerve, Fifth Cranial,Nerve, Trigeminal,Trigeminal Nerves,Trigeminus, Nervus
D014278 Trigeminal Nuclei Nuclei of the trigeminal nerve situated in the brain stem. They include the nucleus of the spinal trigeminal tract (TRIGEMINAL NUCLEUS, SPINAL), the principal sensory nucleus, the mesencephalic nucleus, and the motor nucleus. Trigeminal Nuclear Complex,Nuclear Complex, Trigeminal,Nuclear Complices, Trigeminal,Nuclei, Trigeminal,Nucleus, Trigeminal,Trigeminal Nuclear Complices,Trigeminal Nucleus

Related Publications

M Peschanski, and F Roudier, and H J Ralston, and J M Besson
January 1987, Experimental brain research,
M Peschanski, and F Roudier, and H J Ralston, and J M Besson
August 1983, Neuroscience,
M Peschanski, and F Roudier, and H J Ralston, and J M Besson
January 1991, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
M Peschanski, and F Roudier, and H J Ralston, and J M Besson
January 1989, Brain research,
Copied contents to your clipboard!