Glycoprotein synthesis in the Golgi apparatus of spermatids during spermiogenesis of the rat. 1985

Y Clermont, and X M Tang

During steps 1-7 of spermiogenesis the Golgi apparatus contributes to the formation of the acrosomic system which develops at the surface of the nucleus. Later, in step 8, the Golgi apparatus detaches from the acrosome and remains suspended in the elongated cytoplasm until it degenerates during step 16. Using 3H-fucose as a tracer and the radioautographic technique, we observed that the Golgi apparatus incorporates the tracer and delivers the labeled glycoproteins to the developing acrosomic system during steps 1-7 of spermiogenesis, to multivesicular bodies during steps 1-9, and to the remaining cytoplasm and plasma membrane during steps 1-15. Throughout these steps of spermiogenesis the Golgi apparatus does not show major changes in structure; it is composed of a cortex made up of connected stacks of saccules and a medulla showing a loose aggregate of vesicular profiles. Glycoprotein synthesis in this Golgi apparatus, before and after it contributes lysosomal glycoproteins to the growing acrosomic system, was quantitatively assessed in electron microscope EM radioautographs of tissue sections from animals sacrificed at 1, 4, 8, and 24 h of 3H-fucose injection. The incorporation of the labeled sugar was found to remain quantitatively similar during steps 1-15 of spermiogenesis, and therefore, no shift in glycoprotein synthesis took place following separation of the Golgi apparatus from the acrosomic system. Throughout these steps, fucose molecules are first incorporated in the cortex of the organelle and subsequently transported to the medulla, where they temporarily accumulate before being delivered, depending on the step of spermiogenesis, to the acrosomic system, to the multivesicular bodies, and also, presumably, to the plasma membrane.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005643 Fucose A six-member ring deoxysugar with the chemical formula C6H12O5. It lacks a hydroxyl group on the carbon at position 6 of the molecule. Deoxygalactose,alpha-Fucose,alpha Fucose
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D013087 Spermatids Male germ cells derived from the haploid secondary SPERMATOCYTES. Without further division, spermatids undergo structural changes and give rise to SPERMATOZOA. Spermatoblasts,Spermatid,Spermatoblast
D013091 Spermatogenesis The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. Spermatocytogenesis,Spermiogenesis

Related Publications

Y Clermont, and X M Tang
March 1971, The American journal of anatomy,
Y Clermont, and X M Tang
April 1980, The American journal of anatomy,
Y Clermont, and X M Tang
January 1989, Biology of the cell,
Y Clermont, and X M Tang
June 1985, Shi yan sheng wu xue bao,
Copied contents to your clipboard!