The effect of age on glucose and energy metabolism in brain cortex of rats. 1985

S Hoyer

It is well documented that the mature human brain oxidizes only glucose to obtain energy under physiological, nonstarved conditions. Through adulthood to the beginning of senescence, the balance between oxygen and glucose consumption of the brain was found to be unchanged as the basis for energy production. Beyond the age of 70 yr, however, cerebral glucose consumption appears to decrease. In the present study, the effect of advancing age on glucose and energy metabolism in brain cortex of rats was investigated. The study was carried out in male Wistar rats, 6 (young adult), 12 (adult), 24 and 30 (both aged) mth of age. Male Wistar rats may be designated as being 'aged' from 24 mth of life onwards. Intermediates of glycolysis, tricarboxylic acid cycle and energy-rich compounds were measured by means of sensitive standard enzymatic methods under steady-state conditions of arterial normotension, normoxemia, normocapnia and normothermia in anesthesia with 0.5 vol% halothane and nitrous oxide/oxygen 70:30. The 12-mth-old adult rats served as controls. The glucose concentration in brain cortex was found to be about 1.5 times higher in 6-mth-old than in 12-mth-old animals but did not differ in the 12-, 24-, and 30-mth-old rats. Besides glucose, fructose-1,6-phosphate and ATP decreased from young adult to adult rats while pyruvate, malate and creatine phosphate diminish with advancing age. A tendency to reduction with aging was also evident in glucose-6-phosphate, fructose-1, 6-diphosphate, and lactate. The fall in substrate concentrations may be attributed to the reduced activity of enzymes acting in glucose breakdown. It is concluded that glucose and energy metabolism may diminish with the process of normal aging, but that the reduction is of only moderate extent.

UI MeSH Term Description Entries
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D008297 Male Males
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002951 Citrates Derivatives of CITRIC ACID.
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
Copied contents to your clipboard!