Effect of calcium depletion and calcium paradox on myocardial energy metabolism. 1985

S W Schaffer, and B H Tan

Both phases of the calcium paradox were associated with major alterations in myocardial energy metabolism. During calcium-free perfusion contractility of the heart ceased, resulting in a dramatic decrease in anaerobic and aerobic metabolism but no change in tissue high energy phosphate levels. Tissue content of most citric acid cycle intermediates were elevated, while there was a net decrease in the content of transaminase-linked amino acids. Reperfusion of the calcium-depleted heart with calcium-containing buffer failed to restore either the contractile or the metabolic state of the heart. Within seconds following calcium repletion, tissue high energy phosphate content plummeted. This occurred even though glucose utilization increased significantly and aerobic metabolism remained at levels observed in the calcium-depleted heart. Analogous to changes seen in acidosis and ischemia, alpha-ketoglutarate and citrate levels decreased abruptly. After a short delay, the levels of several key amino acids also dropped. The results support the hypothesis that the impairment of mitochondrial function contributes to the depletion of high energy phosphate stores during the calcium paradox.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine

Related Publications

S W Schaffer, and B H Tan
December 2004, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
S W Schaffer, and B H Tan
April 1987, Journal of cardiovascular pharmacology,
S W Schaffer, and B H Tan
August 1983, The American journal of physiology,
S W Schaffer, and B H Tan
April 1991, Journal of submicroscopic cytology and pathology,
S W Schaffer, and B H Tan
June 1982, Journal of molecular and cellular cardiology,
S W Schaffer, and B H Tan
January 1992, Advances in experimental medicine and biology,
S W Schaffer, and B H Tan
November 1978, Journal of molecular and cellular cardiology,
S W Schaffer, and B H Tan
April 1990, European heart journal,
Copied contents to your clipboard!