Embryologic development of rat adrenal medulla in transplants to the anterior chamber of the eye. 1985

K Unsicker

The morphological development and plasticity of embryonic and postnatal rat adrenal medullary cells were studied in homologous adrenal grafts to the anterior chamber of the eye. The eyes of recipient rats were adrenergically denervated 10 days prior to grafting by extirpation of the superior cervical ganglion in order to increase levels of NGF and NGF-like activities in the iris. Grafts taken at the 15th day of embryonic development (E15), i.e., at the beginning of immigration of medullary progenitor cells into the adrenal cortical anlagen, contained no cortical or mature medullary cells after 2 weeks in oculo. Numerous sympathoblastic cells, however, were located at the anterior surface of the iris. E 16 and E 17 transplants showed abundant mature cortical tissue after 2 weeks. Small groups of medullary cells with the ultrastructural characteristics of mature pheochromoblasts or young chromaffin cells were interspersed among cortical cells without forming a discrete medulla. Neuronal cells were exclusively found outside the cortical cell mass. Sympathoblasts grew at the surface of the iris, while young sympathetic nerve cells, which were invested by Schwann cells and received synaptic axon terminals, were embedded into the stroma of the iris. Grafting of E 21 adrenals yielded very similar results except that, in a few instances, young chromaffin cells were located outside the cortex and sympathetic nerve cells were seen to be in close contact with cortical cells. In transplants of adult medullary cells typical mature adrenaline and noradrenaline cells were clearly distinguishable after 8 weeks even in the absence of cortical cells. The only indication of phenotypical changes in these cells was the formation by some of them, of neuritic processes which could be visualized in glyoxylic acid-treated whole mounts of irises. These results are compatible with the idea that embryonic adrenal medullary cells have the environmentally controlled potential to develop along the neuronal or endocrine line, but could also be interpreted in terms of a selection of a specific subpopulation with predetermined potentialities by a specific microenvironment. Moreover, these results suggest that increasing differentiation of medullary cells is accompanied by progressive restrictions in their genetic program, which eventually prevent full transdifferentiation of mature chromaffin into neuronal cells.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004702 Endocrine Glands Ductless glands that secrete HORMONES directly into the BLOOD CIRCULATION. These hormones influence the METABOLISM and other functions of cells in the body. Endocrine Gland,Gland, Endocrine
D005260 Female Females
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000867 Anterior Chamber The space in the eye, filled with aqueous humor, bounded anteriorly by the cornea and a small portion of the sclera and posteriorly by a small portion of the ciliary body, the iris, and that part of the crystalline lens which presents through the pupil. (Cline et al., Dictionary of Visual Science, 4th ed, p109) Anterior Chambers,Chamber, Anterior,Chambers, Anterior

Related Publications

K Unsicker
September 1983, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
K Unsicker
January 1958, Fertility and sterility,
K Unsicker
March 1972, American journal of ophthalmology,
K Unsicker
December 1957, Minerva chirurgica,
K Unsicker
October 1949, Glasgow medical journal,
Copied contents to your clipboard!