Precursor cells of oligodendrocytes in rat primary cultures. 1985

A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti

In monolayer primary cultures of brain from newborn rats, which contain astrocytes and oligodendrocytes, a new morphological cell type (flat black cells) was observed. Microphotographs of different areas of the monolayer, taken every 30 min, showed that these flat black cells can divide and that they undergo morphological transformation in vitro. They give rise to oligodendrocytes which were identified by their characteristics morphology but also by their content of W1 Wolfgram protein. These findings suggest that the flat black cells are precursors for oligodendrocytes, in culture.

UI MeSH Term Description Entries
D009185 Myelin Proteins MYELIN-specific proteins that play a structural or regulatory role in the genesis and maintenance of the lamellar MYELIN SHEATH structure. Myelin Protein,Protein, Myelin,Proteins, Myelin
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell

Related Publications

A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
August 1994, Neurochemical research,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
January 2019, Advances in experimental medicine and biology,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
May 1991, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
January 1988, Journal of neuroscience research,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
May 1981, In vitro,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
July 2002, Neuroscience letters,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
August 2002, Brain research. Brain research protocols,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
January 1983, Journal of cyclic nucleotide and protein phosphorylation research,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
July 1985, Toxicology,
A Espinosa de los Monteros, and G Roussel, and C Gensburger, and J L Nussbaum, and G Labourdetti
April 1981, Developmental biology,
Copied contents to your clipboard!