[Isolation and characterization of heme transfer protein involved in biosynthesis of microsomal cytochrome b5 from rat liver cytosol]. 1985

M Senjo

Transfer of mitochondrial protoheme to apocytochrome b5 in vitro was accomplished in a reconstitution system consisting of isolated mitochondria (donor) and apocytochrome b5 (acceptor), which required the existence of cytosol. Properties of formed cytochrome b5 were confirmed by its absorption spectra and the function as NADH-cytochrome c reductase. The content of formed cytochrome b5 was dependent on reaction time and the concentration of mitochondrial protoheme, apocytochrome b5, and cytosolic protein. This heme transfer protein was purified to homogeneity and identified with glutathione S-transferases (GSTs), by their same elution patterns in column chromatographies and the same degree of inhibited activities on the immunotitration study. Double immunodiffusion analysis revealed this protein to be GST-C2 (Yb' Yb'). These observations lead to the conclusion that Yb' subunit of GST located in the cytosol of rat liver stimulates the transfer of mitochondrial protoheme to apocytochrome b5, which indicates that GST has an unrecognized function as yet, involving on the biosynthesis of microsomal cytochrome b5.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006420 Hemeproteins Proteins that contain an iron-porphyrin, or heme, prosthetic group resembling that of hemoglobin. (From Lehninger, Principles of Biochemistry, 1982, p480) Hemeprotein,Heme Protein,Heme Proteins,Protein, Heme,Proteins, Heme
D000081062 Heme-Binding Proteins Metalloproteins that contain a HEME ligand as the prosthetic group. Heme-Binding Protein,Heme Binding Protein,Heme Binding Proteins,Protein, Heme-Binding,Proteins, Heme-Binding
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015786 Cytochromes b5 Cytochromes of the b group that are found bound to cytoplasmic side of ENDOPLASMIC RETICULUM. They serve as electron carrier proteins for a variety of membrane-bound OXYGENASES. They are reduced by the enzyme CYTOCHROME-B(5) REDUCTASE. Apocytochrome b5,Cytochrome b-5,Cytochrome b5,Ferricytochrome b5,Cytochrome b 5

Related Publications

M Senjo
October 1970, Biochemical and biophysical research communications,
M Senjo
September 1987, Journal of chromatography,
M Senjo
April 1965, Experimental cell research,
M Senjo
May 1992, Biochemical pharmacology,
M Senjo
December 1970, Biochimica et biophysica acta,
M Senjo
January 1989, Pharmacological research,
M Senjo
March 1980, The Journal of cell biology,
M Senjo
August 1960, The Journal of biological chemistry,
Copied contents to your clipboard!