Intracellular respiratory dysfunction and cell injury in short-term anoxia of rabbit renal proximal tubules. 1985

T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel

The effects of short-term anoxia and hypoxia were studied in a rabbit proximal renal tubule suspension in order to avoid the hemodynamic consequences of clamp-induced ischemia. The suspension was subjected to anoxia for 10-40 min and the effects on a number of cellular transport and respiratory parameters were monitored. Cellular respiration was measured upon addition of nystatin (Nys) to maximally stimulate Na pump activity. Mitochondrial respiration was measured in the tubules by addition of digitonin and ADP to obtain the state 3 respiratory rate. The release of lactate dehydrogenase (LDH) was measured as an index of plasma membrane damage. The cellular contents of K and Ca were also measured. Results show that 10 and 20 min of anoxia partially inhibited Nys-stimulated and mitochondrial respiration, and partially decreased the K contents, but all these effects were largely reversible after 20 min of reoxygenation. After 40 min of anoxia and 20 min of reoxygenation, all these variables remained irreversibly inhibited: Nys-stimulated respiration by 54%, mitochondrial respiration by 50%, K content by 42%, and LDH release was 40% of total. Ca content decreased slightly during anoxia, but increased up to fourfold during severe hypoxia; the excess Ca was released during the first 10 min of reoxygenation. The degree of respiratory impairment was identical during anoxia or hypoxia, suggesting that Ca accumulation was not associated with the impairment. Decreasing the extracellular Ca to 2.5 microM decreased LDH release significantly during anoxia, suggesting that plasma membrane damage during anoxia may be associated with increased intracellular free Ca. Addition of Mg-adenosine triphosphate during anoxia dramatically improved recovery of all the measured parameters after the anoxic period.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D009761 Nystatin Macrolide antifungal antibiotic complex produced by Streptomyces noursei, S. aureus, and other Streptomyces species. The biologically active components of the complex are nystatin A1, A2, and A3. Fungicidin,Mycostatin,Nilstat,Nystatin A1,Nystatin A2,Nystatin A3,Nystatin G,Stamicin,Stamycin
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
March 1992, The American journal of physiology,
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
December 1985, Biochemical and biophysical research communications,
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
August 1988, Kidney international,
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
October 1996, Pediatric nephrology (Berlin, Germany),
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
July 1981, Kidney international,
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
October 1995, The American journal of physiology,
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
February 1990, The Journal of clinical investigation,
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
October 1994, The American journal of physiology,
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
March 1981, The American journal of physiology,
T Takano, and S P Soltoff, and S Murdaugh, and L J Mandel
November 1988, The American journal of physiology,
Copied contents to your clipboard!