Patterns of primary afferent termination in the external cuneate nucleus from cervical axial muscles in the cat. 1985

D A Bakker, and F J Richmond, and V C Abrahams, and J Courville

Using the method of transganglionic transport of horseradish peroxidase (HRP), the distribution of primary afferent projections was examined in the external cuneate nucleus (ECN) from different muscle groups in the forequarter of the cat. The terminal zones of afferent fibers from three shoulder muscles--clavotrapezius, acromiotrapezius, and spinotrapezius--were compared to projections from suboccipital muscles, dorsal neck extensors, and muscles of the proximal forelimb. Each muscle group had a labelled terminal zone that occupied a different subvolume of the ECN. The zone labelled from trapezius muscles formed a continuous column in the ECN running from the caudal pole of the nucleus to a level 3.0 mm rostral to the obex. Terminal zones of suboccipital muscles and dorsal neck extensors formed longer columns that extended into the most rostral tip of the ECN, while those of proximal forelimb muscles formed shorter columns confined to the caudal two-thirds of the ECN. At comparable cross-sectional levels in the caudal and middle portions of the ECN, terminal zones from proximal limb muscles were located most dorsomedially, while those from shoulder muscles, dorsal neck muscles, and suboccipital muscles were located in progressively more ventral and lateral regions. The subvolume of the ECN occupied by projections from cervical axial muscles was estimated to be more than 40% of the volume of the nucleus, suggesting that the ECN has a major role in the transmission of sensory information from axial musculature to the cerebellum. Following exposure of all muscle nerves to tracer, a second labelled zone was also identified close to the ECN in the descending vestibular nucleus at transverse levels 2.0-3.0 mm rostral to the obex. Here, reaction product was concentrated around a circumscribed collection of medium-sized, multipolar cells.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009334 Neck Muscles The neck muscles consist of the platysma, splenius cervicis, sternocleidomastoid(eus), longus colli, the anterior, medius, and posterior scalenes, digastric(us), stylohyoid(eus), mylohyoid(eus), geniohyoid(eus), sternohyoid(eus), omohyoid(eus), sternothyroid(eus), and thyrohyoid(eus). Muscle, Neck,Muscles, Neck,Neck Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
January 1988, Experimental brain research,
D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
November 1981, Brain research,
D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
November 1986, Journal of neurophysiology,
D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
May 1972, Brain research,
D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
February 1985, Brain research,
D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
November 1978, The American journal of physiology,
D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
November 1969, The Journal of physiology,
D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
September 1977, The Journal of comparative neurology,
D A Bakker, and F J Richmond, and V C Abrahams, and J Courville
September 1994, The Journal of comparative neurology,
Copied contents to your clipboard!