Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. 1985

P Room, and F T Russchen, and H J Groenewegen, and A H Lohman

The projections from the caudal part of the medial frontal cortex, encompassing the prelimbic area (PL) and the infralimbic area (IL) (Brodmann's areas 32 and 25, respectively), were studied in the cat with the anterograde autoradiographic tracing technique. The results indicate that the projection fields of IL, in contrast to those of PL, are restricted almost exclusively to limbic structures. Whereas the major thalamic projections from PL reach the mediodorsal, anteromedial, and ventromedial nuclei, the medial part of the lateral posterior nucleus, and the parataenial and reticular nuclei, and weak projections from this area are directed to the nucleus reuniens and other midline nuclei, the nucleus reuniens is the major thalamic termination field of fibers arising from IL. Cortical areas that are reached by fibers originating in PL and, to a lesser degree, also in IL, include more rostral prefrontal areas (areas 8, 6, and 12), the agranular insular, and the rostral perirhinal cortices. In contrast, cortical areas that are more strongly related to IL include the cingulate, retrosplenial, caudal entorhinal, and perirhinal cortices and the subiculum of the hippocampal formation. Another prominent output of PL concerns projections to an extensive medial part of the caudate nucleus and the ventral striatum, whereas fibers from IL only distribute most ventrally in the striatum. In the amygdaloid complex, fibers from PL were found to reach the basolateral, basomedial, and central nuclei, and fibers from IL to distribute to the medial and central nuclei. PL furthermore projects to the claustrum and the endopiriform nucleus. Other structures in the basal forebrain, including the medial septum, the nuclei of the diagonal band, the preoptic area, and the lateral and dorsal hypothalamus are densely innervated by IL and only sparsely by PL. With respect to more caudal parts of the brainstem, projections from PL and IL appeared to be essentially similar. They reach the ventral tegmental area, the periaqueductal gray, the parabrachial nucleus, and in cases of PL injections were followed as far caudally as the pons.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005260 Female Females

Related Publications

P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
December 2003, Brain research,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
December 1991, Brain research,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
December 1997, The Journal of comparative neurology,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
March 2000, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
October 2011, The Journal of comparative neurology,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
August 1989, Neuroscience research,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
December 1997, The Journal of comparative neurology,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
September 1991, Brain research,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
January 2000, Neuroscience research,
P Room, and F T Russchen, and H J Groenewegen, and A H Lohman
January 1989, The Journal of comparative neurology,
Copied contents to your clipboard!