Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons of the rat. 1985

E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy

Neurons immunoreactive for the enzyme adenosine deaminase (ADA) in the posterior basal hypothalamus of the rat have a distribution pattern similar to those immunoreactive for histidine decarboxylase (HDC) and are particularly numerous in the tuberal (TM), caudal (CM) and postmammillary caudal (PCM) hypothalamic magnocellular nuclei which harbor neurons containing glutamic acid decarboxylase (GAD). The extent to which these enzymes coexist within neurons of these hypothalamic regions was examined using either serial sections or simultaneous immunostaining for ADA and HDC or GAD in the same section. Analysis of serial sections revealed neuronal coexistence of ADA with HDC or GAD in both TM and CM. In addition some neurons in CM, the only area examined for triple coexistence, were found to contain all three enzymes. In sections processed for ADA simultaneously with HDC or GAD, nearly all ADA-immunoreactive neurons in TM, CM, and PCM as well as those scattered between these nuclei were found to contain HDC, and nearly all contained GAD. Exceptions to this, however, were small cells located lateral to the posterior arcuate nucleus, which appeared to contain ADA but not HDC, and large neurons located at the anterior extreme of TM, which appeared to contain ADA but not GAD. The relatively few ADA- compared with GAD-containing neural systems in brain, together with the presence of ADA in GAD-containing hypothalamic magnocellular neurons, which appear to have widespread projections throughout the brain, indicate that ADA may be a convenient immunohistochemical marker for anatomical investigations of these projections.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009700 Nucleoside Deaminases Catalyze the hydrolysis of nucleosides with the elimination of ammonia. Deaminases, Nucleoside
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D006640 Histidine Decarboxylase An enzyme that catalyzes the decarboxylation of histidine to histamine and carbon dioxide. It requires pyridoxal phosphate in animal tissues, but not in microorganisms. EC 4.1.1.22. Histidine Carboxy-Lyase,Carboxy-Lyase, Histidine,Decarboxylase, Histidine,Histidine Carboxy Lyase

Related Publications

E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
January 1986, Neuroscience letters,
E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
April 1984, Neuroscience letters,
E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
August 1978, Experientia,
E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
June 1987, Brain research bulletin,
E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
November 1995, Journal of neurophysiology,
E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
July 1984, Neuroscience letters,
E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
October 1988, Neuroscience,
E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
October 1976, Brain research,
E Senba, and P E Daddona, and T Watanabe, and J Y Wu, and J I Nagy
November 1963, Biochemical pharmacology,
Copied contents to your clipboard!