Caudal medullary expiratory neurone and internal intercostal nerve discharges in the cat: effects of lung inflation. 1985

M I Cohen, and J L Feldman, and D Sommer

In midcollicular decerebrate, thoracotomized, paralysed cats that were ventilated by a cycle-triggered pump and had an expiratory load, recordings were taken from expiratory neurones in the nucleus retroambigualis of the caudal medulla and from the internal intercostal nerves at T8-T9 levels. Expiratory neurone and internal intercostal activities had augmenting patterns of two types: (a) step-ramp (one-third of the neurones): a large initial increase of activity synchronous with inspiratory termination, followed by a ramp increase throughout the expiratory phase; (b) ramp (two-thirds of the neurones): a steady rise of activity without a sharp initial increase, discharge usually starting after a delay (as much as several hundred milliseconds) from the onset of expiration. Both types of unit pattern could occur together with each type of internal intercostal pattern. At the end of expiration, unit activity shut off abruptly just prior (0-120 ms) to the onset of phrenic discharge. The effects of pulmonary afferent discharge on unit and internal intercostal activities were evaluated by use of inflation tests: withholding inflation during the preceding inspiratory phase; maintaining inflation at the end-inspiratory level during expiration. Both tests produced lengthening of expiratory phase duration (TE), but their effects on activity differed. Following no-inflation during inspiration, the discharge onset delay was lengthened for most ramp neurones, but for only a minority of step-ramp neurones; the slope of activity augmentation did not change on the average; and the peak (end-expiratory) discharge frequency was only slightly increased. The predominant effect of maintained expiratory inflation was reduction of activity slope for ramp neurones and for a minority of step-ramp neurones, as well as increase of peak frequency; there was a moderate increase of discharge onset delay for ramp neurones, but not for step-ramp neurones. The lengthening of TE produced by no-inflation in the preceding inspiration was associated with lengthening of the durations of both the discharge onset delay and the discharge burst, but there was no correlation between changes of these two variables. We observed a 'reversal phenomenon': moderate inflation facilitated activity, whereas higher inflation levels depressed activity, as demonstrated by: comparison of effects of maintained expiratory deflation (removal of the expiratory load) and of maintained expiratory inflation, both of which reduced activity; comparison of effects of phasic expiratory inflations having different magnitudes.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007367 Intercostal Nerves The ventral rami of the thoracic nerves from segments T1 through T11. The intercostal nerves supply motor and sensory innervation to the thorax and abdomen. The skin and muscles supplied by a given pair are called, respectively, a dermatome and a myotome. Intercostal Nerve,Nerve, Intercostal,Nerves, Intercostal
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000768 Anesthesia, General Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery. Anesthesias, General,General Anesthesia,General Anesthesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M I Cohen, and J L Feldman, and D Sommer
February 1989, Journal of applied physiology (Bethesda, Md. : 1985),
M I Cohen, and J L Feldman, and D Sommer
July 1991, Brain research,
M I Cohen, and J L Feldman, and D Sommer
January 1987, Brain research,
M I Cohen, and J L Feldman, and D Sommer
June 1991, The Journal of physiology,
M I Cohen, and J L Feldman, and D Sommer
April 1985, Sheng li xue bao : [Acta physiologica Sinica],
M I Cohen, and J L Feldman, and D Sommer
January 1989, Experimental brain research,
M I Cohen, and J L Feldman, and D Sommer
February 1994, The Journal of physiology,
M I Cohen, and J L Feldman, and D Sommer
February 1994, Sheng li xue bao : [Acta physiologica Sinica],
M I Cohen, and J L Feldman, and D Sommer
February 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
M I Cohen, and J L Feldman, and D Sommer
March 1976, Acta physiologica Scandinavica,
Copied contents to your clipboard!