Effect of ionophore antibiotics on experimentally induced lactic acidosis in cattle. 1985

T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon

Salinomycin, a new ionophore antibiotic, was tested and compared with lasalocid and monensin for preventing experimentally induced lactic acidosis. Five rumen-fistulated adult cattle were used in a 5 X 5 Latin square design, and the treatments were as follows: no treatment (control), 0.11 mg of salinomycin/kg of body weight (S1), 0.22 mg of salinomycin/kg (S2), 0.66 of lasalocid/kg, and 0.66 mg of monensin/kg. Acidosis was induced by intraruminal administration of a ground corn-corn starch mixture (50:50, 12.5 g/kg) once a day for up to 4 days. Antibiotics were administered along with grain-starch mixture. Rumen and blood samples were obtained before and at 6, 12, and 24 hours after each carbohydrate-antibiotic dosing to monitor acid-base status. Control and S1-treated cattle became ruminally acidotic within 54 hours, whereas cattle treated with S2, lasalocid, and monensin resisted acidosis for up to 78 hours after dosing. Cattle treated with S2, lasalocid, or monensin had higher rumen pH and lower L(+)- and D(-)-lactate concentrations than did control or S1-treated cattle. Rumen pH decrease to below 5.0 in S2-, lasalocid-, and monensin-treated cattle was not due to lactic acid, but to increased production of volatile fatty acids. Rumen propionate proportion increased initially in antibiotic-treated cattle, but after 48 hours, butyrate proportion increased significantly. Despite low rumen pH and high lactate concentration, lacticacidemia was not evident, and the systemic acid-base disturbance was mild in control cattle.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D007832 Lasalocid Cationic ionophore antibiotic obtained from Streptomyces lasaliensis that, among other effects, dissociates the calcium fluxes in muscle fibers. It is used as a coccidiostat, especially in poultry. Avatec,Lasalocid A,Ro 2-2985,X-537A,Ro 2 2985,Ro 22985,X 537A,X537A
D008985 Monensin An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts' development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies. Coban,Monensin Monosodium Salt,Monensin Sodium,Monensin-A-Sodium Complex,Rumensin,Monensin A Sodium Complex
D011714 Pyrans Pyran
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002418 Cattle Diseases Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus. Bovine Diseases,Bovine Disease,Cattle Disease,Disease, Bovine,Disease, Cattle,Diseases, Bovine,Diseases, Cattle
D005503 Food Additives Substances used in the processing or storage of foods or animal feed including ANTIOXIDANTS; FOOD PRESERVATIVES; FOOD COLORING AGENTS; FLAVORING AGENTS; ANTI-INFECTIVE AGENTS; EXCIPIENTS and other similarly used substances. Many of the same substances are used as PHARMACEUTIC AIDS. Additive, Food,Additives, Food,Food Additive
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
December 1987, Australian veterinary journal,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
March 2004, Journal of veterinary medicine. A, Physiology, pathology, clinical medicine,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
April 1986, The Journal of laboratory and clinical medicine,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
March 1981, Journal of animal science,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
July 1978, Zentralblatt fur Veterinarmedizin. Reihe A,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
November 1983, Veterinarni medicina,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
August 1999, Research in veterinary science,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
September 2000, DTW. Deutsche tierarztliche Wochenschrift,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
March 1980, Journal of animal science,
T G Nagaraja, and T B Avery, and S J Galitzer, and D L Harmon
February 1995, The Journal of the Association of Physicians of India,
Copied contents to your clipboard!