H2 histaminic receptors in rat cerebral cortex. 1. Binding of [3H]histamine. 1985

G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells

Saturable binding of [3H]histamine in equilibrium with homogenates of rat cerebral cortex reveals Hill coefficients between 0.4 and 1.0, depending upon the conditions. Data from individual experiments are well described assuming one or two classes of sites. Only the sites of higher affinity (KP1 = 3.9 +/- 0.5 nM) are observed when binding is measured by isotopic dilution at a low concentration of the radioligand (less than 1.5 nM) in the presence of magnesium or by varying the concentration of the radioligand. The sites of lower affinity (KP2 = 221 +/- 26 nM) appear during isotopic dilution at higher concentrations of the radioligand or at lower concentrations either upon the addition of guanylyl imidodiphosphate (GMP-PNP) or upon the removal of magnesium. Estimates of the second- and first-order rate constants for association and dissociation of [3H]histamine agree well with KP1. Apparent capacities corresponding to KP1 and KP2 are of the order of 100 ([R1]t) and 1300 pmol/g of protein ([R2]t), respectively. Simple interconversion cannot account for the changes in binding that occur upon adding GMP-PNP or removing magnesium, since the increase in [R2]t exceeds the decrease in [R1]t. Moreover, the apparent amount of high-affinity complex exhibits a biphasic dependence on the concentration of [3H]histamine; an increase at low concentrations is offset by a decrease that occurs at higher concentrations. The latter appears to be positively cooperative and concomitant with formation of the low-affinity complex. These and other observations indicate that the binding of histamine is inconsistent with models commonly invoked to rationalize the binding of agonists to neurohumoral receptors. GMP-PNP and magnesium reciprocally alter capacity at the sites of higher affinity, however, and the reduction caused by GMP-PNP reflects a substantial increase in the rate constant for dissociation at the sites that appear to be lost. The sites labeled by [3H]histamine thus reveal the properties of neurohumoral receptors linked to a nucleotide-specific G/F protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011968 Receptors, Histamine Cell-surface proteins that bind histamine and trigger intracellular changes influencing the behavior of cells. Histamine receptors are widespread in the central nervous system and in peripheral tissues. Three types have been recognized and designated H1, H2, and H3. They differ in pharmacology, distribution, and mode of action. Histamine Binding Sites,Histamine Receptors,Histamine Receptor,Binding Sites, Histamine,Receptor, Histamine,Sites, Histamine Binding
D011970 Receptors, Histamine H2 A class of histamine receptors discriminated by their pharmacology and mode of action. Histamine H2 receptors act via G-proteins to stimulate ADENYLYL CYCLASES. Among the many responses mediated by these receptors are gastric acid secretion, smooth muscle relaxation, inotropic and chronotropic effects on heart muscle, and inhibition of lymphocyte function. (From Biochem Soc Trans 1992 Feb;20(1):122-5) Histamine H2 Receptors,H2 Receptors,Receptors, H2,H2 Receptors, Histamine
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
October 1985, Biochemistry,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
October 1985, Biochemistry,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
January 1983, Nature,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
February 1991, Pharmacological research,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
March 1977, Neuropharmacology,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
April 1986, Agents and actions,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
August 1980, Biochemical pharmacology,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
June 1977, Life sciences,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
October 1982, Biochemical and biophysical research communications,
G H Steinberg, and J G Eppel, and M Kandel, and S I Kandel, and J W Wells
October 1999, British journal of pharmacology,
Copied contents to your clipboard!