Submodality and columnar organization of the second somatic sensory area in cats. 1985

K D Alloway, and H Burton

Electrophysiological responses of 519 single and 405 multiple neurons located in the distal forelimb zone of the second somatic sensory cortex (SII) of 11 intact cats were characterized according to their submodality and receptive field properties. In 4 of these animals, 46 single and 134 multiple neuronal responses were studied after transection of the dorsal columns contralateral to the cortical recording sites. Receptive field positions overlapped considerably in SII during orthogonal electrode penetrations, but were shifted during tangential penetrations. Analysis of the receptive field positions for neurons encountered in tangential penetrations indicated that receptive fields rarely overlapped when the neurons were separated by more than 750 microns. Using a variety of hand-held stimuli, neuronal responses were assessed according to several criteria including: velocity, adaptation, following rate, spontaneous activity, and whether the response was elicited by stimulating hairs, skin, claws, or deep tissue. Based on these parameters, it was possible to discern several types of neuronal responses in SII. Among these, over 60% of the neurons in our sample responded best to movement of hairs. A smaller number of neurons responded as though they received inputs from Pacinian receptors or rapidly adapting receptors in the glabrous skin. In about 20% of the single neuron sample, it was not possible to identify a selective adequate stimulus, however, these cells responded to somatic stimuli, such as taps. Approximately 5% of the neurons could not be driven with somatic sensory stimuli. Following dorsal column lesions, some neurons in SII still responded to cutaneous stimulation, primarily hair movement. Most SII neurons were more difficult to drive, the responses were more sluggish and receptive fields were less well-defined. A greater proportion of single neuron responses (greater than 60%) could not be activated by any type of somatic sensory stimulus. These results indicate that the dorsal columns provide a potent, but not exclusive, source of afferent input to SII.

UI MeSH Term Description Entries
D010141 Pacinian Corpuscles Rapidly adapting mechanoreceptors found in subcutaneous tissue beneath both hairy and glabrous skin. Pacinian corpuscles contain an afferent nerve fiber surrounded by a capsule with multiple concentric layers. They have large receptive fields and are most sensitive to high-frequency stimuli, such as vibration. Pacinian Corpuscle,Corpuscle, Pacinian,Corpuscles, Pacinian
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D006197 Hair A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body. Fetal Hair,Hair, Fetal,Lanugo,Fetal Hairs,Hairs,Hairs, Fetal
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012677 Sensation The process in which specialized SENSORY RECEPTOR CELLS transduce peripheral stimuli (physical or chemical) into NERVE IMPULSES which are then transmitted to the various sensory centers in the CENTRAL NERVOUS SYSTEM. Sensory Function,Organoleptic,Function, Sensory,Functions, Sensory,Sensations,Sensory Functions
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.

Related Publications

K D Alloway, and H Burton
September 1982, The Journal of comparative neurology,
K D Alloway, and H Burton
July 1977, The Journal of comparative neurology,
K D Alloway, and H Burton
November 1987, The Journal of comparative neurology,
K D Alloway, and H Burton
July 1980, The Journal of comparative neurology,
K D Alloway, and H Burton
January 1962, Acta physiologica Scandinavica. Supplementum,
K D Alloway, and H Burton
May 1986, The Journal of comparative neurology,
Copied contents to your clipboard!