Effects of (+)-propranolol on intracellular mechanisms of contraction in striated muscle of the rabbit. 1985

J Y Su, and D A Malencik

In functionally skinned muscle fibers from the rabbit, we studied the effect of propranolol on calcium activation of the contractile proteins and, in separate experiments, on calcium uptake and release from the sarcoplasmic reticulum (SR) while measuring physiological tension. Pieces from isolated papillary muscle (PM), soleus (SL) (slow-twitch skeletal muscle), and adductor magnus (AM) (fast-twitch skeletal muscle) were homogenized (sarcolemma disrupted). A fiber bundle from PM and single fibers from SL and AM were dissected from the homogenate and mounted on a photodiode tension transducer. To study Ca2+-activated tension development of the contractile proteins, we used high EGTA (7 mmol/l) to control the free calcium concentration. To study SR function, we used five different solutions to load the calcium into the SR and to release it from the SR with 25 mmol/l caffeine, thus producing a tension transient. In general, propranolol has similar mechanisms of action in the three muscle types. Propranolol (0.1-1.0 mmol/l) increased the submaximal calcium-activated tension development in all muscles but with PM = SL greater than AM, and this increase was correlated with increases in calcium binding to isolated troponin C. Propranolol increased the maximal calcium-activated tension development in PM and SL, but decreased that in AM. Propranolol at concentrations of 0.3-1.0 mmol/l decreased calcium uptake by the SR but did not change calcium release in any of the three muscles. In PM, however, propranolol at a concentration of 0.1 mmol/l increased calcium uptake by the SR. We conclude that propranolol induces decreases in muscle contraction mainly by decreasing calcium uptake by the SR.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003285 Contractile Proteins Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena. Contractile Protein,Protein, Contractile,Proteins, Contractile

Related Publications

J Y Su, and D A Malencik
September 1988, Naunyn-Schmiedeberg's archives of pharmacology,
J Y Su, and D A Malencik
November 1952, The American journal of physiology,
J Y Su, and D A Malencik
June 1979, The Journal of sports medicine and physical fitness,
J Y Su, and D A Malencik
October 1977, L'union medicale du Canada,
J Y Su, and D A Malencik
April 2000, Physiological reviews,
J Y Su, and D A Malencik
April 1977, European journal of pharmacology,
J Y Su, and D A Malencik
January 1985, Advances in myocardiology,
J Y Su, and D A Malencik
September 1989, Trends in biochemical sciences,
Copied contents to your clipboard!