The effect of methylene blue on the hepatocellular redox state and liver lipid content during chronic ethanol feeding in the rat. 1985

P R Ryle, and J Chakraborty, and A D Thomson

Feeding of ethanol in a liquid diet to male Wistar rats caused decreases in the hepatic cytosolic and mitochondrial [NAD+]/[NADH] ratios. This redox-state change was attenuated after 16 days of feeding ethanol as 36% of the total energy intake. Supplementation of the ethanol-containing liquid diet with Methylene Blue largely prevented the ethanol-induced redox state changes, but did not significantly decrease the severity of the hepatic lipid accumulation that resulted from ethanol ingestion. Methylene Blue did not affect body-weight gain, ethanol intake or serum ethanol concentrations in ethanol-fed rats, nor did the compound influence the hepatic redox state or liver lipid content of appropriate pair-fed control animals. These findings suggest that the altered hepatic redox state that results from ethanol oxidation is not primarily responsible for the production of fatty liver after long-term ethanol feeding in the rat.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008751 Methylene Blue A compound consisting of dark green crystals or crystalline powder, having a bronze-like luster. Solutions in water or alcohol have a deep blue color. Methylene blue is used as a bacteriologic stain and as an indicator. It inhibits GUANYLATE CYCLASE, and has been used to treat cyanide poisoning and to lower levels of METHEMOGLOBIN. Methylthionine Chloride,Swiss Blue,Basic Blue 9,Chromosmon,Methylene Blue N,Methylthioninium Chloride,Urolene Blue,Blue 9, Basic,Blue N, Methylene,Blue, Methylene,Blue, Swiss,Blue, Urolene
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid

Related Publications

P R Ryle, and J Chakraborty, and A D Thomson
September 1972, Canadian journal of biochemistry,
P R Ryle, and J Chakraborty, and A D Thomson
March 1967, The Journal of nutrition,
P R Ryle, and J Chakraborty, and A D Thomson
June 2002, Free radical research,
P R Ryle, and J Chakraborty, and A D Thomson
February 1955, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P R Ryle, and J Chakraborty, and A D Thomson
January 2000, Alcohol and alcoholism (Oxford, Oxfordshire),
P R Ryle, and J Chakraborty, and A D Thomson
November 1989, Hepatology (Baltimore, Md.),
P R Ryle, and J Chakraborty, and A D Thomson
January 1995, Pancreas,
P R Ryle, and J Chakraborty, and A D Thomson
November 1988, Scandinavian journal of clinical and laboratory investigation,
P R Ryle, and J Chakraborty, and A D Thomson
January 1987, Digestive diseases and sciences,
P R Ryle, and J Chakraborty, and A D Thomson
February 1997, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!