Structure of myosin decorated actin filaments and natural thin filaments. 1985

J Seymour, and E J O'Brien

Negatively stained paracrystals of reconstituted thin filaments decorated with myosin subfragment 1 (S1), at high calcium concentrations (greater than or equal to 10(-5) M), exhibit pgg plane group symmetry with component filaments having 28 subunits in 13 turns of the actin genetic helix. Isolated S1 decorated F-actin filaments trapped in a stain film were also observed to form spontaneously paracrystals with pgg plane group symmetry. We conclude that a favourable S1-S1 interaction must exist in order to stabilize these structures. Three-dimensional helical reconstructions, calculated from these paracrystals show S1 to be curved, 12 to 14 nm long and tilted with respect to the helical axis, in broad agreement with previous reconstructions calculated from isolated particles. Reconstructions of S1 and HMM decorated filaments that resolve actin show a principal myosin binding site located on the side of the actin subunit reported by Taylor & Amos [J. molec. Biol. 147, 297-324 (1981)] and a possible small interaction on the opposite side. The appearance, symmetry and helical reconstructions of isolated F-actin filaments decorated with heavy meromyosin (HMM) were similar to those of S1 decorated filaments, except at high radii where extra mass was observed. This probably arose from the connection between the two heads of HMM bound to the same long-pitch strand of actin. In contrast to most studies on thin filaments, which use reconstituted filaments, we present data on natural I-segments of muscle homogenates. Individual filaments exhibited actin helical symmetry which on reconstruction gave a two-domain motif oriented consistently with its long axis approximately perpendicular to the helical axis, but inclined towards the 5.9 nm genetic helix. Our original interpretation of these maps [Seymour & O'Brien, Nature, Lond. 283, 680-2 (1980)] depended upon reconstructions from F-actin paracrystals, which suggested actin was rather symmetrical in shape. New data from two- and three-dimensional crystal studies and reconstructions of actin-tropomyosin filaments show that actin is rather elongated and consists of two domains. These results indicate that actin contributes towards both domains of our I-segment motif and are consistent with the monomer long axis lying approximately perpendicular to the helical axis. Although tropomyosin is not resolved, comparison of the actin-tropomyosin and I-segment reconstructions suggests that tropomyosin is strongly merged with the actin domain at a lower radius from the helical axis and that the domain at higher radius arises solely from actin.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D014335 Tropomyosin A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN. Paramyosin,Miniparamyosin,Paratropomyosin,Tropomyosin Mg,alpha-Tropomyosin,beta-Tropomyosin,gamma-Tropomyosin,Mg, Tropomyosin,alpha Tropomyosin,beta Tropomyosin,gamma Tropomyosin
D015879 Myosin Subfragments Parts of the myosin molecule resulting from cleavage by proteolytic enzymes (PAPAIN; TRYPSIN; or CHYMOTRYPSIN) at well-localized regions. Study of these isolated fragments helps to delineate the functional roles of different parts of myosin. Two of the most common subfragments are myosin S-1 and myosin S-2. S-1 contains the heads of the heavy chains plus the light chains and S-2 contains part of the double-stranded, alpha-helical, heavy chain tail (myosin rod). Actomyosin Subfragments,Meromyosin Subfragments,Myosin Rod,Myosin S-1,Myosin S-2,ATPase, Actin-S1,Actin S1 ATPase,Actoheavy Meromyosin,Actomyosin Subfragment 1 ATPase,H-Meromyosin,Heavy Meromyosin,Heavy Meromyosin Subfragment-1,Heavy Meromyosin Subfragment-2,Light Meromyosin,Myosin Subfragment-1,Myosin Subfragment-2,ATPase, Actin S1,Actin-S1 ATPase,H Meromyosin,Heavy Meromyosin Subfragment 1,Heavy Meromyosin Subfragment 2,Meromyosin Subfragment-1, Heavy,Meromyosin Subfragment-2, Heavy,Meromyosin, Actoheavy,Meromyosin, Heavy,Meromyosin, Light,Myosin S 1,Myosin S 2,Myosin Subfragment 1,Myosin Subfragment 2,Subfragment-1, Heavy Meromyosin,Subfragment-1, Myosin,Subfragment-2, Heavy Meromyosin,Subfragment-2, Myosin,Subfragments, Actomyosin,Subfragments, Meromyosin,Subfragments, Myosin

Related Publications

J Seymour, and E J O'Brien
June 1970, Journal of molecular biology,
J Seymour, and E J O'Brien
May 1987, Journal of molecular biology,
J Seymour, and E J O'Brien
June 1980, Journal of molecular biology,
J Seymour, and E J O'Brien
May 1982, Journal of molecular biology,
J Seymour, and E J O'Brien
April 2014, Journal of neurochemistry,
J Seymour, and E J O'Brien
December 2010, The Journal of biological chemistry,
J Seymour, and E J O'Brien
April 1987, The Journal of biological chemistry,
Copied contents to your clipboard!