Gradient in excitation-contraction coupling in canine gastric antral circular muscle. 1985

A J Bauer, and K M Sanders

Slow waves decay in amplitude as they propagate through the thickness of circular muscle of the canine antrum. Slow waves are the excitable events that initiate contractions in the antrum. Excitation-contraction coupling occurs if slow wave depolarizations surpass a 'mechanical threshold'. The amplitude of slow waves recorded from circular muscle cells near the submucosa was insufficient to reach the mechanical threshold previously determined for muscle near the myenteric plexus, suggesting that either submucosal cells are normally mechanically quiescent, or that contractions of submucosal cells are initiated at more polarized levels. Experiments were performed to determine the voltage-tension relationships in adjacent 'myenteric' and 'submucosal' circular muscles. Membrane potentials of the muscles were depolarized by elevated concentrations of potassium. Submucosal muscles were stimulated to contract at lower potassium concentrations than were myenteric muscles. Contractions of submucosal muscles at each potassium concentration studied were more forceful than contractions of myenteric muscles. Plots of membrane potential vs. potassium concentration on a logarithmic scale showed that the membrane potential of myenteric cells was more dependent upon the potassium gradient than the membrane potential of submucosal cells. The potassium permeability of both groups of cells increased when depolarized, and the slopes of these plots approached Nernstian levels when depolarized below -55 mV. Force developed in submucosal strips at more polarized levels than in myenteric muscles. The 'mechanical threshold' of submucosal muscles was 5-10 mV above resting potential, whereas myenteric muscles had to be depolarized by 25-30 mV before contraction was initiated. The mechanisms responsible for the difference in mechanical thresholds are not known, but differences in the voltage dependence of calcium channels, in calcium release mechanisms, or in the sensitivity of the contractile proteins to calcium could be involved.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011706 Pyloric Antrum The region between the sharp indentation at the lower third of the STOMACH (incisura angularis) and the junction of the PYLORUS with the DUODENUM. Pyloric antral glands contain mucus-secreting cells and gastrin-secreting endocrine cells (G CELLS). Antrum, Pyloric,Gastric Antrum,Antrum, Gastric,Antrums, Gastric,Antrums, Pyloric,Gastric Antrums,Pyloric Antrums
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A J Bauer, and K M Sanders
February 1992, The Journal of physiology,
A J Bauer, and K M Sanders
January 1992, Advances in experimental medicine and biology,
A J Bauer, and K M Sanders
January 1989, The Journal of pharmacology and experimental therapeutics,
A J Bauer, and K M Sanders
December 1994, Digestive diseases and sciences,
A J Bauer, and K M Sanders
January 1964, Annual review of physiology,
A J Bauer, and K M Sanders
September 1965, Pharmacological reviews,
A J Bauer, and K M Sanders
January 1985, Progress in biophysics and molecular biology,
A J Bauer, and K M Sanders
January 1975, Progress in cardiovascular diseases,
A J Bauer, and K M Sanders
September 1989, Molecular and cellular biochemistry,
A J Bauer, and K M Sanders
November 1967, Japanese circulation journal,
Copied contents to your clipboard!