[Cooperative phenomena in the membrane potential of parathyroid cells induced by divalent cations]. 1985

T Hirose

Membrane potentials of mouse parathyroid cells were measured by means of the intracellular microelectrode method. The membrane potential in external Krebs solution containing 2.5 mM of Ca++ was -23.6 +/- 0.4 mV (mean +/- standard error of mean). The low concentration of Ca++ (1.0 mM) caused hyperpolarization of the membrane potential to -61.7 +/- 0.8 mV. The membrane potential was proportional to the logarithm of the concentration of K ion in the solution of low Ca ion. The concentration of external Na+, C1- and HPO4-- had no effect on the membrane potential. The sigmoidal transition of membrane potentials was induced by the change of Ca ion concentration in the range from 2.5 to 1.0 mM. The change of the membrane potentials in low Ca ion is originated from increase in potassium permeability of the cell membrane. The similar sigmoidal changes of the membrane potentials were observed in the solution containing 4 to 3 mM of Sr ion. The Mg and Ba ion showed smaller effect on the membrane potential. The Goldman equation was extended to divalent ions. Appling the extended membrane potential equation, ratios of the permeability coefficients were obtained as follows: PK/PCa = 0.067 for 2.5 mM Ca++, 0.33 for 1.0 mM Ca++; PK/PSr = 0.08 for 4 mM Sr++ and 0.4 for 3 mM Sr++; PK/PMg = 0.5; PK/PBa = 0.67 for all range of concentration. The Hill constants of Sr ion and Ca ion were 20; the relationship between Sr ion and Ca ion was competitive. The Hill constants of Mg and Ba ion were 1 each. The Hill constant of Ca ion was depend of the temperature; nmax = 20 at 36 degrees C, n = 9 at 27 degrees C, n = 2 at 22 degrees C. The enthalpy of Ca-binding reaction was obtained from the Van't Hoff plot as 0.58 kcal. The activation energies of the K+ permeability increase were obtained from the Arrhenius plots as 3.3 kcal and 4 kcal. The difference, 0.7 kcal, corresponds to the enthalpy change of this reaction, of which value is close to that of the Ca-binding reaction.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010280 Parathyroid Glands Two pairs of small oval-shaped glands located in the front and the base of the NECK and adjacent to the two lobes of THYROID GLAND. They secrete PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body. Gland, Parathyroid,Glands, Parathyroid,Parathyroid Gland
D010756 Phosphoric Acids Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES. Pyrophosphoric Acids,Acids, Phosphoric,Acids, Pyrophosphoric
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002713 Chlorine An element with atomic symbol Cl, atomic number 17, and atomic weight 35, and member of the halogen family. Chlorine Gas,Chlorine-35,Cl2 Gas,Chlorine 35,Gas, Chlorine,Gas, Cl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
Copied contents to your clipboard!