Characterization of an unusual catecholamine-containing cell type in the toad hypothalamus. A correlated ultrastructural and fluorescence histochemical study. 1971

O C McKenna, and J Rosenbluth

A nucleus of catecholamine-containing cells bordering the preoptic recess of the toad hypothalamus has been studied by both fluorescence histochemical and electron microscopic methods. The perikarya of these cells form one to three rows immediately subjacent to the ependyma. They send brightly fluorescent apical processes between the ependymal cells to the ventricular surface, and also give rise to long basal processes, the proximal portions of which are also fluorescent. These cells contain two distinctive constitutents: juxtanuclear bundles of tightly packed filaments, the members of which are separated from one another by only approximately 100 A, and large numbers of dense-cored vesicles (400-2200 A in diameter), which appear to arise from an agranular tubular reticulum distinct from the Golgi apparatus. Axons containing either clear vesicles alone or clear and dense-cored vesicles form synapses on the subependymal cells, but no evidence has been found that the subependymal cells themselves form presynaptic contacts, or that axons originate from them. The cytological characteristics of these catecholamine-containing cells, plus the fact that they border directly on the cerebrospinal fluid, suggest that they may be more closely related to peripheral chromaffin cells than to the other cell types intrinsic to the central nervous system, and the name "encephalo-chromaffin cells" is therefore proposed for them. The possible functions of such cells in the central nervous system are discussed.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002555 Cerebrospinal Fluid A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES. Cerebro Spinal Fluid,Cerebro Spinal Fluids,Cerebrospinal Fluids,Fluid, Cerebro Spinal,Fluid, Cerebrospinal,Fluids, Cerebro Spinal,Fluids, Cerebrospinal,Spinal Fluid, Cerebro,Spinal Fluids, Cerebro
D002838 Chromaffin System The cells of the body which stain with chromium salts. They occur along the sympathetic nerves, in the adrenal gland, and in various other organs. Argentaffin System,Argentaffin Systems,Chromaffin Systems,System, Argentaffin,System, Chromaffin,Systems, Argentaffin,Systems, Chromaffin
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic

Related Publications

O C McKenna, and J Rosenbluth
May 1973, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
O C McKenna, and J Rosenbluth
March 1975, Japanese circulation journal,
O C McKenna, and J Rosenbluth
November 1984, Journal of the autonomic nervous system,
O C McKenna, and J Rosenbluth
January 1966, Acta physiologica Scandinavica,
O C McKenna, and J Rosenbluth
February 1974, Journal of molecular and cellular cardiology,
O C McKenna, and J Rosenbluth
June 1968, Japanese journal of pharmacology,
Copied contents to your clipboard!