Spiking neural networks for EEG signal analysis: From theory to practice. 2025

Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
Department of Electrical and Computer Engineering, National University of Singapore, Singapore. Electronic address: elesiqi@nus.edu.sg.

The intricate and efficient information processing of the human brain, driven by spiking neural interactions, has led to the development of spiking neural networks (SNNs) as a cutting-edge neural network paradigm. Unlike traditional artificial neural networks (ANNs) that use continuous values, SNNs emulate the brain's spiking mechanisms, offering enhanced temporal information processing and computational efficiency. This review addresses the critical gap between theoretical advancements and practical applications of SNNs in EEG signal analysis. We provide a comprehensive examination of recent SNN methodologies and their application to EEG signals, highlighting their potential benefits over conventional deep learning approaches. The review encompasses foundational knowledge of SNNs, detailed implementation strategies for EEG analysis, and challenges inherent to SNN-based methods. Practical guidance is provided through step-by-step instructions and accessible code available on GitHub, aimed at facilitating researchers' adoption of these techniques. Additionally, we explore emerging trends and future research directions, emphasizing the potential of SNNs to advance brain-computer interfaces and neurofeedback systems. This paper serves as a valuable resource for bridging the gap between theoretical developments in SNNs and their practical implementation in EEG signal analysis.

UI MeSH Term Description Entries

Related Publications

Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
January 2025, Frontiers in neuroscience,
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
September 2024, Biomedical engineering letters,
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
July 2025, Scientific reports,
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
November 2023, Neural networks : the official journal of the International Neural Network Society,
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
August 2009, International journal of neural systems,
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
January 2025, Frontiers in neuroscience,
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
February 2020, Neural networks : the official journal of the International Neural Network Society,
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
September 2023, Sensors (Basel, Switzerland),
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
February 2021, International journal of neural systems,
Siqi Cai, and Zheyuan Lin, and Xiaoli Liu, and Wenjie Wei, and Shuai Wang, and Malu Zhang, and Tanja Schultz, and Haizhou Li
December 2025, Cognitive neurodynamics,
Copied contents to your clipboard!