The osmotic behavior of rod photoreceptor outer segment discs. 1971

J Heller, and T J Ostwald, and D Bok

The permeability properties of frog rod photoreceptor outer segment discs were investigated in preparations of purified, dark-adapted, outer segment fragments by the techniques of direct volume measurement and electron microscopy. Outer segment discs were found to swell and contract reversibly in response to changes in the osmotic pressure of the bathing medium in accordance with the Boyle-van't Hoff law. By use of the criterion of reversible osmotic swelling, the disc membrane is impermeable to Na(+), K(+), Mg(+2), Ca(+2), Cl(-), and (PO(4))(-3) ions, whereas it is freely permeable to ammonium acetate. The disc membrane is impermeable to sucrose, although its osmotic behavior towards this substance is different from its behavior towards impermeable ions. Electron microscopy showed that the osmotic effects on the rod outer segment fragments represent changes in the intradiscal volume. Fixation with glutaraldehyde did not abolish the permeability properties of the disc membrane, and fixed membranes were still capable of osmotic volume changes. It is concluded from this study that the frog's rod photoreceptor outer segment discs are free-floating membranous organelles with an inside space separate and distinct from the photoreceptor intracellular space.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

J Heller, and T J Ostwald, and D Bok
May 2001, Experimental eye research,
J Heller, and T J Ostwald, and D Bok
December 1990, Visual neuroscience,
J Heller, and T J Ostwald, and D Bok
January 1987, Investigative ophthalmology & visual science,
J Heller, and T J Ostwald, and D Bok
March 1979, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J Heller, and T J Ostwald, and D Bok
January 2014, Channels (Austin, Tex.),
J Heller, and T J Ostwald, and D Bok
January 2013, Methods in molecular biology (Clifton, N.J.),
J Heller, and T J Ostwald, and D Bok
February 1973, The Journal of cell biology,
J Heller, and T J Ostwald, and D Bok
January 1980, Transactions of the Ophthalmological Society of New Zealand,
J Heller, and T J Ostwald, and D Bok
November 2009, Human molecular genetics,
J Heller, and T J Ostwald, and D Bok
November 2017, Investigative ophthalmology & visual science,
Copied contents to your clipboard!