Reinitiation of cell wall growth after threonine starvation of Streptococcus faecalis. 1971

M L Higgins, and H M Pooley, and G D Shockman

Cultures of Streptococcus faecalis ATCC 9790 were starved of threonine for 10 hr and then allowed to reinitiate growth in a fresh complete medium. On regrowth, culture turbidity began to increase within 10 min, but the ability of cells to autolyze did not begin to increase until after 30 min. Ultrastructural studies of regrowth of the initially thick-walled cells showed, at about 30 min, centripetal linear extension of new thin cross wall. This was followed, at about 40 min, by a notching, splitting, and peeling apart of the base of the cross wall. After this, extension of new thin peripheral wall from the nascent cross wall appeared to push old thick wall toward the poles. After the first cell division, asymmetric cells with one initial generation thick-walled pole and one second generation thin-walled pole were seen. After two divisions, thick-walled hemispheres were still seen, suggesting conservation of old wall during this time. A small fraction of the initial cell population exhibited aberrations and difficulties in reinitiating linear wall extension and were useful in the establishment of a model for the reinitiation of linear wall extension.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D001433 Bacteriolysis Rupture of bacterial cells due to mechanical force, chemical action, or the lytic growth of BACTERIOPHAGES. Bacteriolyses
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D013293 Enterococcus faecalis A species of gram-positive, coccoid bacteria commonly isolated from clinical specimens and the human intestinal tract. Most strains are nonhemolytic. Streptococcus Group D,Streptococcus faecalis
D013912 Threonine An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine,L Threonine

Related Publications

M L Higgins, and H M Pooley, and G D Shockman
February 1970, Journal of bacteriology,
M L Higgins, and H M Pooley, and G D Shockman
June 1964, Canadian journal of microbiology,
M L Higgins, and H M Pooley, and G D Shockman
January 1959, Postepy biochemii,
M L Higgins, and H M Pooley, and G D Shockman
July 1970, Journal of bacteriology,
M L Higgins, and H M Pooley, and G D Shockman
February 1958, The Journal of biological chemistry,
M L Higgins, and H M Pooley, and G D Shockman
April 1984, Journal of general microbiology,
M L Higgins, and H M Pooley, and G D Shockman
August 1974, Canadian journal of microbiology,
M L Higgins, and H M Pooley, and G D Shockman
April 1962, The Journal of biological chemistry,
M L Higgins, and H M Pooley, and G D Shockman
November 1978, Indian journal of experimental biology,
Copied contents to your clipboard!