Localization of sequences coding for histone messenger RNA in the chromosomes of Drosophila melanogaster. 1977

M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel

In situ hybridization of sea urchin (Psammechinus miliaris, Lytechinus pictus and Strongylocentrotus purpuratus) histone messenger RNA has been used to map complementary sequences on polytene chromosomes from Drosophila melanogaster. The sea urchin RNA hybridizes to the polytene regions from 39D3 through 39E1-2, including both of these bands (39D2 may also be included). This region is identical to the one which hybridizes most heavily with non-polyadenylated cytoplasmic RNA from D. melanogaster tissues. Sea urchin mRNAs coding for several individual histones each hybridize across the entire region from 39D3 (or D2) through 39E1-2, as would be expected if the individual mRNA sequences are interspersed. In view of the apparently even distribution of sequences complementary to histone mRNA within the 39D3-39E1-2 region, the significance of the several polytene bands in this region remains an open question. Biochemical characterization of the hybrids between sea urchin histone mRNA and D. melanogaster DNA suggest that sea urchin mRNAs for several of the histone classes have some portions which retain enough sequence homology with the D. melanogaster sequences to form hybrids, although the hybrids have base pair mismatches. In situ hybridization of chromosomes in which region 39-E is ectopically paired show no evidence of seqence homology in the chromosome region with which 39D-E is associated.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005815 Genetic Code The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON). Code, Genetic,Codes, Genetic,Genetic Codes
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea

Related Publications

M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
May 1977, Proceedings of the National Academy of Sciences of the United States of America,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
June 1975, Biochemistry,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
January 1978, Journal of molecular biology,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
October 1979, Journal of molecular biology,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
January 1981, Chromosoma,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
November 1973, Biochemical genetics,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
December 1974, Cell,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
June 1977, Chromosoma,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
January 1978, Cold Spring Harbor symposia on quantitative biology,
M L Pardue, and L H Kedes, and E S Weinberg, and M L Birnstiel
March 2020, Chromosoma,
Copied contents to your clipboard!