Lipoprotein particles from the Golgi apparatus of guinea-pig liver. 1972

M J Chapman, and G L Mills, and C E Taylaur

1. A cell fraction has been isolated from guinea-pig liver and shown to be rich in Golgi apparatus by electron microscopy. The activity of UDP-d-galactose-N-acetylglucosamine galactosyltransferase was over 100-fold greater in this cell fraction than in the liver homogenate. These data support the conclusion that the fraction was enriched in Golgi apparatus. 2. The Golgi cisternae and secretory vesicles contained electron-dense particles of 10-80nm diameter. Disruption of the Golgi apparatus cell fraction released these particles, which were separated into VLD (very-low-density) and LD (low-density) species on the basis of their density. 3. The Golgi VLD particles possessed morphological, flotational, chemical and immunochemical properties which closely resembled those of the serum VLD lipoproteins from the same animals. 4. The Golgi LD particles were rich in phospholipid, containing 48.1% by weight. The chemical composition of these particles was quite distinct from that of the serum LD lipoproteins, but did, however, show some similarity to that of the serum VLD lipoproteins. A marked resemblance was noted in the chemical characteristics of the Golgi LD and VLD particles (with the exception of triglyceride content). In addition, these two species of Golgi particles possessed the same antigenic determinant. 5. The results suggest that the Golgi VLD particles are the precursors of the serum VLD lipoproteins. On the basis of similarities in gross chemical composition and in the antigenic determinant of the Golgi LD and VLD particles, we conclude that the LD particles are probably the precursors of the VLD particles. In view of the marked differences in gross chemical composition of the Golgi LD particles and serum LD lipoproteins, it appears unlikely that the LD particles are directly secreted into the serum pool.

UI MeSH Term Description Entries
D007788 Lactose Synthase An enzyme complex that catalyzes the transfer of GALACTOSE from UDP GALACTOSE to GLUCOSE, forming LACTOSE. The enzyme complex is composed of a B subunit, ALPHA-LACTALBUMIN, which changes the substrate specificity of the A subunit, N-ACETYLLACTOSAMINE SYNTHASE, from N-ACETYLGLUCOSAMINE to glucose making lactose synthesis the preferred reaction. Lactose Synthetase,N-Acetylgucosamide 1-4 beta Galactosyl Transferase,N Acetylgucosamide 1 4 beta Galactosyl Transferase,Synthase, Lactose,Synthetase, Lactose
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids

Related Publications

M J Chapman, and G L Mills, and C E Taylaur
July 1969, Journal of lipid research,
M J Chapman, and G L Mills, and C E Taylaur
February 1979, Cytobiologie,
M J Chapman, and G L Mills, and C E Taylaur
January 1985, Cell and tissue research,
M J Chapman, and G L Mills, and C E Taylaur
March 1981, Journal of ultrastructure research,
M J Chapman, and G L Mills, and C E Taylaur
November 1988, Journal of lipid research,
M J Chapman, and G L Mills, and C E Taylaur
May 1999, European journal of biochemistry,
M J Chapman, and G L Mills, and C E Taylaur
June 1970, Biochimica et biophysica acta,
M J Chapman, and G L Mills, and C E Taylaur
April 1970, Science (New York, N.Y.),
M J Chapman, and G L Mills, and C E Taylaur
May 1979, Biochimica et biophysica acta,
Copied contents to your clipboard!