The hysteretic properties of glycogen synthase I. 1977

H Solling, and V Esmann

Glycogen-free synthase I from human polymorphonuclear leukocytes is activated by its own substrate, glycogen, in a slow, time-dependent process (hysteretic activation). This lag in response to addition of glycogen depends on the concentration of glycogen, pH and temperature. At pH 7.4 and at a temperature of 30 degrees C, the half-time of activation t 1/2 decreases from 89 min at 0.004 mg/ml glycogen to 6 min at 25 mg/ml. The activation is accelerated by increasing temperature and pH, but is not influenced by enzyme concentration, glucose 6-phosphate, UDP, high ionic strength, EDTA, mercaptoethanol, glucose, sucrose or amylase limit dextrin. The Km for UDP-glucose (0.024 mM) and the activity ratio were unchanged during the activation process. The activation can be described by vt = vf + (vo - vf) e-kt where vt, vf and vo are velocities at times t, O and infinity and k is a complex rate constant. Evidence from ultracentrifugation and kinetic studies is presented to substantiate the hypothesis that the underlying mechanism is a simple biolecular process: enzyme + glycogen in equilibrium enzyme-glycogen complex, with the dissociation constant Ks = 0.003 mg/ml. The hysteretic activation may become rate-limiting during experiments in vitro with synthase. The possibility of a physiological role in glycogen metabolism, perhaps in the form of a concerted hysteresis with H+ is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006003 Glycogen
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H Solling, and V Esmann
February 1979, European journal of biochemistry,
H Solling, and V Esmann
November 1984, Biokhimiia (Moscow, Russia),
H Solling, and V Esmann
September 1982, Biokhimiia (Moscow, Russia),
H Solling, and V Esmann
January 1973, Biochimica et biophysica acta,
H Solling, and V Esmann
January 1973, Biochimica et biophysica acta,
H Solling, and V Esmann
January 1982, Comparative biochemistry and physiology. B, Comparative biochemistry,
H Solling, and V Esmann
February 1986, Biochemical and biophysical research communications,
Copied contents to your clipboard!