Membrane synthesis in synchronous cultures of Bacillus subtilis 168. 1973

M G Sargent

Synthesis of bacterial membranes has been investigated in Bacillus subtilis by examining incorporation of amino acids and glycerol into the protein and lipid of membranes of synchronous cultures. A simple reproducible fractionation scheme divides cellular proteins into three classes (i) truly cytoplasmic, (ii) loosely membrane bound, released by chelating agents, and (iii) tightly membrane bound. These comprise approximately 75, 10, and 15%, respectively, of cellular proteins in this organism. Incorporation of radioactivity into these fractions, using steady-state and pulse labeling has been followed during the cell cycle. Cytoplasmic proteins and the loosely membrane-bound proteins are labeled at an exponential rate throughout the cell cycle. The membrane fraction is labeled discontinuously in the cell cycle, with periods of rapid synthesis over the latter part of the cycle and a period with no net synthesis during the early part of the cycle. Pulse labeling indicates that synthesis of membrane occurs at a linear rate that doubles at a fixed time in each cycle, which coincides with the period of zero net synthesis. Rates of membrane synthesis measured by pulse labeling during the period of rapid membrane synthesis are significantly less than indicated by steady-state labeling. These discrepancies are consistent with the hypothesis that during the cell cycle certain proteins are added to the membrane from the cytoplasm and that during the period of zero net synthesis there is an efflux of proteins from the membrane. Evidence in favor of this has been presented. The activity of succinic dehydrogenase (a representative of class c) varies in a step-wise manner with periods of rapid increase, approximately coincident with bursts of membrane protein synthesis, alternating with periods without any increase in activity. The activities of malate dehydrogenase (class a) and reduced nicotinamide adenine dinucleotide dehydrogenase (class b) increased throughout the cell cycle. Phospholipid synthesis is continuous throughout the cell cycle.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D010772 Phosphotungstic Acid Tungsten hydroxide oxide phosphate. A white or slightly yellowish-green, slightly efflorescent crystal or crystalline powder. It is used as a reagent for alkaloids and many other nitrogen bases, for phenols, albumin, peptone, amino acids, uric acid, urea, blood, and carbohydrates. (From Merck Index, 11th ed) Acid, Phosphotungstic
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture

Related Publications

M G Sargent
March 1998, Applied microbiology and biotechnology,
M G Sargent
November 1975, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M G Sargent
July 1980, Journal of general microbiology,
M G Sargent
April 1974, Journal of virology,
M G Sargent
March 1969, Journal of bacteriology,
M G Sargent
January 1996, Microbial drug resistance (Larchmont, N.Y.),
M G Sargent
December 1992, Molecular & general genetics : MGG,
Copied contents to your clipboard!