Deficiency of 60 to 70S RNA in murine leukemia virus particles assembled in cells treated with actinomycin D. 1974

J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky

Production of particles with the ultrastructural appearance of C-type virions persisted for at least 6 h in actinomycin D-treated cells infected with murine leukemia virus. This phenomenon occurred despite severe inhibition of viral RNA synthesis. Virus particles present in a 6-h harvest sedimented in sucrose gradients with the buoyant density characteristic of RNA tumor viruses (1.16 g/cm(3)) and exhibited high levels of reverse transcriptase activity in response to the exogenous template polyriboadenylic acid.oligo deoxythymidylic acid in the range of untreated controls. However, RNase-sensitive endogenous activity was only (1/5) the level found in controls. This observation correlated with a marked reduction in infectivity. Kinetic studies on the appearance of labeled RNA in banded virions revealed that within the first hour after addition of actinomycin D, particles contained 60 to 70S RNA and two low-molecular-weight RNA species corresponding to 8 and 4S RNA. After approximately 1 h of incubation with actinomycin D, 60 to 70S RNA could not be detected and 4S RNA was the predominant species. These findings suggest that murine leukemia virus particles assembled in the presence of actinomycin D are deficient in 60 to 70S viral RNA.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009052 Leukemia Virus, Murine Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice. Graffi Virus,Graffi's Chloroleukemic Strain,Leukemia Viruses, Murine,Mouse Leukemia Viruses,Murine Leukemia Virus,Murine Leukemia Viruses,Graffi Chloroleukemic Strain,Graffis Chloroleukemic Strain,Leukemia Viruses, Mouse
D011925 Rauscher Virus A strain of MURINE LEUKEMIA VIRUS associated with mouse tumors similar to those caused by the FRIEND MURINE LEUKEMIA VIRUS. It is a replication-competent murine leukemia virus. It can act as a helper virus when complexing with a defective transforming component, RAUSCHER SPLEEN FOCUS-FORMING VIRUS. Rauscher leukemia virus,Rauscher leukemia viruses,Virus, Rauscher,leukemia viruses, Rauscher
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
April 1976, Proceedings of the National Academy of Sciences of the United States of America,
J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
August 1975, Biochemical and biophysical research communications,
J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
September 1974, Journal of virology,
J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
March 1978, Journal of virology,
J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
June 1967, Virology,
J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
January 1966, Federation proceedings. Translation supplement; selected translations from medical-related science,
J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
August 1978, Journal of virology,
J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
September 1980, Journal of virology,
J G Levin, and P M Grimley, and J M Ramseur, and I K Berezesky
January 1977, Journal of virology,
Copied contents to your clipboard!